Биологическое разнообразие. Что включает в себя воздушно-наземная среда обитания? Экологические особенности наземно-воздушной среды обитания

Биологическое разнообразие. Что включает в себя воздушно-наземная среда обитания? Экологические особенности наземно-воздушной среды обитания

Все живые существа, населяющие нашу, планету живут в определенных условиях, которые соответствуют уровню развития, чертам организации и жизнедеятельности организмов. Кем населена наземно-воздушная среда? Особенности среды, которая является самой населенной, и многое другое будет рассмотрено в нашей статье.

Что такое среда обитания

Средой обитания организмов называют все, что их окружает. И это не только естественные объекты, но и то, что создано человеком.

Совокупность всех сред обитания составляет биосферу. Это в которой возможна жизнь. Но человек своей деятельностью настолько преобразил ее, что ученые выделяют еще одно образование. Оно называется ноосферой. Это оболочка планеты, созданная деятельностью человека.

Основные группы экологических факторов

Все условия среды, которые в той или иной степени действуют на организмы, называют экологическими факторами. Они достаточно разнообразны. Но по характеру воздействия их разделяют на несколько групп.

  • Первая объединяет все Их называют абиотическими. Это количество солнечного света, температура воздуха, уровень влажности и радиационного излучения, направленность ветра и характер рельефа. Для обитателей водной среды это соленость и вид течений.
  • Биотические факторы объединяют все виды влияния живых организмов и их взаимоотношений между собой. Они могут быть взаимовыгодными, нейтральными хищническими и др.
  • Деятельность человека, изменяющая среду обитания, представляет собой группу антропогенных факторов.

Среды обитания живых организмов

Особенности наземно-воздушной среды обитания заключаются в том, что она является самой разнообразной и сложной. Этому факту есть закономерное объяснение.

Особенности наземно-воздушной среды жизни

Сложность структуры и условий данной среды объясняется тем, что она находится на стыке нескольких географических оболочек - гидро-, лито - и атмосферы. Поэтому организмы, обитающие в ней, испытывают влияние факторов каждой из них. Их черты строения позволяют им выдерживать резкие перепады температур, изменение химического и влажности.

Абиотические факторы наземно-воздушной среды

Особенности наземно-воздушной среды обитания включают несколько факторов. Во-первых, это низкий показатель плотности воздуха. Малая плотность воздушных масс позволяет ее обитателям легко передвигаться по земле или летать.

Следующей особенностью является то, что воздух находится в постоянном движении. Это "течение" обеспечивает автоматическое передвижение многих обитателей и их продуктов жизнедеятельности. Это семена растений, споры грибов и бактерий, мелкие насекомые и паукообразные. При этом атмосферное давление в этой среде характеризуется низким показателем, который в норме составляет 760 мм ртутного столба. Изменение этой величины приводит к нарушению физиологических процессов местных обитателей. Так, при падении давления с высотой снижается способность кислорода растворяться в плазме крови. В результате его становится меньше, дыхание учащается, что приводит к излишней потере влаги.

Организмы наземно-воздушной среды

Одним из признаков всего живого является способность к адаптации. Особенности животных наземно-воздушной среды, как и других организмов, заключаются в том, что все они в процессе эволюции приобрели приспособления к резкому перепаду температур, климату и смене времен года.

К примеру, многие растения для переживания засухи и холодов имеют видоизменения корня и побега. В луковице порея и тюльпана, корнеплодах моркови и свеклы, листьях алоэ запасается вода и необходимые вещества. Споры бактерий и растений, клетки микроскопических животных переносят сложные условия в состоянии цисты. При этом они покрываются плотной оболочкой, а все обменные процессы сводятся к минимуму. Когда неблагоприятный период завершается, клетки делятся и переходят к активному существованию.

У многих животных наземно-воздушной среды сформирована сложная система терморегуляции и теплообмена с окружающей средой, благодаря которому их температура тела остается постоянной независимо от времени года.

Действие антропогенного фактора

Деятельностью человека изменена больше всего именно наземно-воздушная среда. Особенности среды, которые вначале были природными, остались таковыми, пожалуй, только в арктических пустынях. Низкие температуры делают эту природную зону непригодной для жизни. Поэтому особенности организмов наземно-воздушной среды заключаются еще и в том, что они испытывают большее влияние антропогенного фактора по сравнению с обитателями других экологических ниш.

Человек преобразует естественные ландшафты и рельеф, изменяет газовый состав атмосферы, химическую основу почв, влияет на чистоту водоемов. Не все живые организмы успевают приспособиться к интенсивно меняющимся условиям, вызванным действием антропогенного фактора. К сожалению, негативное влияние человека на состояние наземно-воздушной среды в данный момент преобладает над всеми попытками сохранить жизнь.

Глобальные наземно-воздушной среды обитания

Как пострадала от рук человека наземно-воздушная среда? Особенности среды, ее основные физические показатели в большинстве природных зон, пригодных для жизни, изменены. Это привело к появлению глобальных экологических проблем в мире. Деятельность промышленных предприятий вызвала изменение газового состава атмосферы. В результате в воздухе создается большая, по сравнению с нормой, концентрация углекислого газа, накапливаются оксиды серы и азота, фреоны. Результат - глобальное потепление, парниковый эффект, разрушение озонового слоя земли, смог над большими городами.

В результате нерационального природопользования уменьшается общая площадь лесов, которые являются "легкими" нашей планеты, обеспечивая все живое кислородом. С течением времени исчерпываются минеральные ресурсы и снижается плодородность почв.

Итак, самой разнообразной является именно наземно-воздушная среда. Особенности среды заключаются в ее расположении на стыке нескольких природных географических оболочек. Ее основными характеристиками является низкая плотность, давление и подвижность воздушных масс, постоянство газового состава атмосферы, непостоянство теплового режима, смена климатических условий и времен года. Особое значение для нормальной жизнедеятельности в наземно-воздушной среде имеют показатели влажности и температуры воздуха.

ЛЕКЦИЯ 4

СРЕДЫ ЖИЗНИ И АДАПТАЦИИ К НИМ ОРГАНИЗМОВ.

Водная среда.

Это самая древняя среда, в которой жизнь возникла и долго эволюционировала еще до того мо­мента, как первые организмы появились на суше. По составу водной среды жизни различаются два ее основных варианта: пресноводная и морская среды.

Водой покрыто более 70% поверхности планеты. Тем не менее, за счет сравнительной выравненности условий этой среды («вода всегда мокрая») разнообразие организмов в водной среде намного меньше, чем на суше. Лишь каждый десятый вид царства растений связан с водной средой, разнообразие водных животных несколько выше. Общее соотношение числа видов «суша/вода» - около 1:5.

Плотность воды выше плотности воздуха в 800 раз. И давление на населяющие ее организмы также много выше, чем в наземных условиях: на каждый 10 м глубины оно возрастает на 1 атм. Одно из основных направлений приспособления организ­мов к жизни в водной среде - повышение плавучести за счет увеличения поверхности тела и формирования тканей и орга­нов, содержащих воздух. Организмы могут парить в воде (как представители планктона - водоросли, простейшие, бактерии) или активно перемещаться, как рыбы, формирующие нектон. Значительная часть организмов прикреплена к поверхности дна или перемещается по ней. Как уже отмечалось, важным фактором водной среды является течение.

Таблица 1 - Сравнительная характеристика сред обитания и адаптации к ним живых организмов

Основу продукции большинства водных экосистем составляют автотрофы, использующие солнечный свет, пробивающийся через толщу воды. Возможность «пробивания» этой толщи определяется прозрачностью воды. В прозрачной воде океана в зависимости от угла падения солнечного света автотрофная жизнь возможна до глубины 200 м в тропиках и 50 м в высоких широтах (например, в морях Северного Ледовитого океана). В сильно взмученных пресноводных водоемах слой, заселенный автотрофами (его называют фотическим), может составлять всего несколько десятков сантиметров.

Наиболее активно поглощается водой красная часть спектра света, поэтому, как отмечалось, глубоководья морей заселены красными водорослями, способными за счет дополнительных пигментов усваивать зеленый свет. Прозрачность воды определяется несложным прибором - диском Секки, который представляет собой окрашенный в белый цвет круг диаметром 20 см. О степени прозрачности воды судят по глубине, на которой диск становится неразличимым.

Важнейшей характеристикой воды является ее химичес­кий состав - содержание солей (в том числе биогенов), газов, ионов водорода (рН). По концентрации биогенов, особенно фосфора и азота, водоемы разделяются на олиготрофные, мезотрофные и эвтрофные. При повышении содержания биогенов, скажем, при загрязнении водоема стоками, происходит процесс эвтрофикации водных экосистем.

Содержание кислорода в воде примерно в 20 раз ниже, чем в атмосфере, и составляет 6-8 мл/л. Оно снижается при повышении температуры, а также в стоячих водоемах в зимнее время, когда вода изолирована от атмосферы слоем льда. Снижение концентрации кислорода может стать причиной гибели многих обитателей водных экосистем, исключая особо устойчивые к дефициту кислорода виды, подобные карасю или линю, которые могут жить даже при снижении содержания кис­лорода до 0,5 мл/л. Содержание углекислого газа в воде, напротив, выше, чем в атмосфере. В морской воде его может содержаться до 40-50 мл/л, что примерно в 150 раз выше, чем в атмосфере. Потребление углекислого газа фитопланктоном при интенсивном фотосинтезе не превышает 0,5 мл/л в сутки.

Концентрация ионов водорода в воде (рН) может меняться в пределах 3,7-7,8. Нейтральными считаются воды с рН от 6,45 до 7,3. Как уже отмечалось, с понижением рН биоразнообразие организмов, населяющих водную среду, быстро убы­вает. Речной рак, многие виды моллюсков гибнут при рН ниже 6, окунь и щука могут выдержать рН до 5, угорь и голец выживают при понижении рН до 5-4,4. В более кислых водах сохраняются лишь некоторые виды зоопланктона и фитопланктона. Кислотные дожди, связанные с выбросами в атмосферу больших количеств оксидов серы и азота промышленными предприятиями, стали причиной подкисления вод озер Европы и США и резкого обеднения их биологического раз­нообразия. Лимитирующим фактором часто бывает кислород. Содержание его обычно не превышает 1 % от объема. При повышении температуры, обогащении органическим веществом и слабом перемешивании содержание кислорода в воде уменьшается. Малая доступность кислорода для организмов связана также с его слабой диффузией (в воде она в тысячи раз меньше, чем в воздухе). Второй лимитирующий фактор - свет. Освещенность быстро уменьшается с глубиной. В идеально чистых водах свет может проникать до глубины 50-60 м, в сильно загрязненных - только на несколько сантиметров.

Эта среда наиболее однородна среди других. Она мало изменяется в пространстве, здесь нет четких границ между отдельными экосистемами. Амплитуды значений факторов также невелики. Разница между максимальными и минимальными значениями температуры здесь обычно не превышает 50°С (в то время как в наземно-воздушной среде-до 100°С). Среде присуща высокая плотность. Для океанических вод она равна 1,3 г/см 3 , для пресных -близка к единице. Давление изменяется только в зависимости от глубины: каждый 10-метровый слой воды увеличивает давление на 1 атмосферу.

В воде мало теплокровных, или гомойотермных (греч. хомой-одинаковый, термо - тепло), организмов. Это результат двух причин: малое колебание температур и недостаток кислорода. Основной адаптационный механизм гомойотермии - противостояние неблагоприятным температурам. В воде такие температуры маловероятны, а в глубинных слоях температура практически постоянна (+4°С). Поддержание постоянной температуры тела обязательно связано с интенсивными процессами обмена веществ, что возможно только при хорошей обеспеченности кислородом. В воде таких условий нет. Теплокровные животные водной среды (киты, тюлени, морские котики и др.) - это бывшие обитатели суши. Их существование невозможно без периодической связи с воздушной средой.

Типичные обитатели водной среды имеют переменную температуру тела и относятся к группе пойкиотермных (греч. пойкиос - разнообразный). Недостаток кислорода они в какой-то мере компенсируют увеличением соприкосновения органов дыхания с водой. Многие обитатели вод (гидробионты) потребляют кислород через все покровы тела. Часто дыхание сочетается с фильтрационным типом питания, при котором через организм пропускается большое количество воды. Некоторые организмы в периоды острого недостатка кислорода способны резко замедлять жизнедеятельность, вплоть до состояния анабиоза (почти полное прекращение обмена веществ).

К высокой плотности воды организмы адаптируются в основном двумя путями. Одни используют ее как опору и находятся в состоянии свободного парения. Плотность (удельный вес) таких организмов обычно мало отличается от плотности воды. Этому способствует полное или почти полное отсутствие скелета, наличие выростов, капелек жира в теле или воздушных полостей. Такие организмы объединяются в группу планктона (греч. планктос -блуждающий). Различают растительный (фито-) и животный (зоо-) планктон. Размеры планктонных организмов обычно невелики. Но на их долю приходится основная масса водных обитателей.

Активно передвигающиеся организмы (пловцы) адаптируются к преодолению высокой плотности воды. Для них характерна продолговатая форма тела, хорошо развитая мускулатура, наличие структyp уменьшающих трение (слизь, чешуя). В целом же высокая плотность воды имеет следствием уменьшение доли скелета в общей массе тела гидробионтов по сравнению с наземными организмами. В условиях недостатка света или его отсутствия организмы для ориентации используют звук. Он в воде распространяется намного быстрее, чем в воздухе. Для обнаружения различных препятствий используется отраженный звук по типу эхолокации. Для ориентации используются также запаховые явления (в воде запахи ощущаются намного лучше, чем в воздухе). В глубинах вод многие организмы обладают свойством самосвечения (биолюминесценции).

Растения, обитающие в толще воды, используют в процессе фотосинтеза наиболее глубоко проникающие в воду голубые, синие и сине-фиолетовые лучи. Соответственно и цвет растений меняется с глубиной от зеленого к бурому и красному.

Адекватно адаптационным механизмам выделяются следующие группы гидробионтов: отмеченный выше планктон - свободнопарящие, нектон (греч. нектос - плавающий) - активно передвигающиеся, бентос (греч. бентос - глубина) - обитатели дна, пелагос (греч. пелагос - открытое море) - обитатели водной толщи, нейстон - обитатели верхней пленки воды (часть тела может быть в воде, часть - в воздухе).

Воздействие человека на водную среду проявляется в уменьшении прозрачности, изменении химического состава (загрязнении) и температуры (тепловое загрязнение). Следствием этих и других воздействий является обеднение кислородом, снижение продуктивности, смены видового состава и другие отклонения от нормы.

Наземно-воздушная среда.

Воздух отличается значи­тельно более низкой плотностью по сравнению с водой. По этой причине освоение воздушной среды, которое произошло много позже, чем зарождение жизни и ее развитие в вод­ной среде, сопровождалось усилением развития механических тканей, позволившим организмам противостоять действию закона всемирного тяготения и ветра (скелет у позвоночных животных, хитиновые панцири у насекомых, склеренхима у растений). В условиях только воздушной среды ни один организм постоянно жить не может, и потому даже лучшие «летуны» (птицы и насекомые) должны периодически опускаться на землю. Перемещение организмов по воздуху возможно за счет специальных приспособлений - крыльев у птиц, насекомых, некоторых видов млекопитающих и даже рыб, парашутики и крылышки у семян, воздушные мешки у пыльцы хвойных пород и т.д.

Воздух - плохой проводник тепла, и потому именно в воздушной среде на суше возникли эндотермные (теплокровные) животные, которым легче сохранить тепло, чем эктотермным обитателям водной среды. Для теплокровных водных животных, включая гигантов-китов, водная среда вторична, предки этих животных когда-то жили на суше.

Для жизни в воздушной среде потребовались более сложные механизмы размножения, которые исключали бы риск высыхания половых клеток (многоклеточные антеридии и архегонии, а затем семязачатки и завязи у растений, внутреннее оплодотворение у животных, яйца с плотной оболочкой у птиц, пресмыкающихся, земноводных и др.).

В целом возможностей для формирования разнообразных сочетаний факторов в условиях наземно-воздушной среды много больше, чем водной. Именно в этой среде особенно ярко проявляются различия климата разных районов (и на разных высотах над уровнем моря в пределах одного района). Поэтому разнообразие наземных организмов много выше, чем водных.

Эта среда относится к наиболее сложной как по свойствам, так и по разнообразию в пространстве. Для нее характерна низкая плотность воздуха, большие колебания температуры (годовые амплитуды до 100°С), высокая подвижность атмосферы. Лимитирующими факторами чаще всего являются недостаток или избыток тепла и влаги. В отдельных случаях, например под пологом леса, недостаток света.

Большие колебания температуры во времени и ее значительная изменчивость в пространстве, а также хорошая обеспеченность кислородом явились побудительными мотивами для появления организмов с постоянной температурой тела (гомойотермных). Гомойотермия позволила обитателям суши существенно расширить место обитания (ареалы видов), но это неизбежно связано с повышенными энергетическими тратами.

Для организмов наземно-воздушной среды типичны три механизма адаптации к температурному фактору: физический, химический, поведенческий. Физический осуществляется регулированием теплоотдачи. Факторами ее являются кожные покровы, жировые отложения, испарение воды (потовыделение у животных, транспирация у растений). Этот путь характерен для пойкиотермных и гомойотермных организмов. Химические адаптации базируются на поддержании определенной температуры тела. Это требует интенсивного обмена веществ. Такие адаптации свойственны гомойотермным и лишь частично пойкиотермным организмам. Поведенческий путь осуществляется посредством выбора организмами предпочтительных положений (открытые солнцу или затененные места, разного вида укрытия и т. п.). Он свойственен обеим группам организмов, но пойкиотермным в большей степени. Растения приспосабливаются к температурному фактору в основном через физические механизмы (покровы, испарение воды) и лишь частично - поведенческие (повороты пластинок листьев относительно солнечных лучей, использование тепла земли и утепляющей роли снежного покрова).

Адаптации к температуре осуществляются также через размеры и форму тела организмов. Для выделения теплоотдачи выгоднее крупные размеры (чем крупнее тело, тем меньше его поверхность на единицу массы, а следовательно, и теплоотдача, и наоборот). По этой причине одни и те же виды, обитающие в более холодных условиях (на севере), как правило, крупнее тех, которые обитают в более теплом климате. Эта закономерность называется правилом Бергмана. Регулирование температуры осуществляется также через выступающие части тела (ушные раковины, конечности, органы обоняния). В холодных районах они, как правило, меньше по размерам, чем в более теплых (правило Аллена).

О зависимости теплоотдачи от размеров тела можно судить по количеству кислорода, расходуемого при дыхании на единицу массы различными организмами. Оно тем больше, чем меньше размеры животных. Так, на 1 кг массы потребление кислорода (см 3 /час) составило: лошадь - 220, кролик - 480, крыса -1800, мышь - 4100.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30

На планете Земля можно выделить несколько основных сред жизни:

водную

наземно-воздушную

почвенную

живой организм.

Водная среда жизни.

У организмов, обитающих в воде, имеются приспособления определяемые физическими свойствами воды (плотностью, теплопроводностью, способностью рас-творять соли).

За счет выталкивающей силы воды многие мелкие обитатели водной среды находятся во взвешенном состоянии и не способны противостоять течениям. Совокупность таких мелких водных обитателей по-лучила название планктон. В состав планктона входят микроскопиче-ские водоросли, мелкие рачки, икра и личинки рыб, медузы и многие другие виды.

Планктон

Планктонные организмы переносятся течениями не в силах противостоять им. Наличие в воде планктона делает возмож-ным фильтрационный тип питания, т. е. отцеживание, при помощи разных приспособлений, взвешенных в воде мелких организмов и пищевых частиц. Оно развито и у плавающих, и у сидячих донных жи-тных, таких, как морские лилии, мидии, устрицы и другие. Сидячий Раз жизни был бы невозможен у водных обитателей, если бы не было планктона, а он, в свою очередь, возможен только в среде с достаточной плотностью.

Плотность воды затрудняет активное передвижение в ней, поэтому быстро плавающие животные, такие, как рыбы, дельфины, кальмары, должны иметь сильную мускулатуру и обтекаемую форму тела.

Акула-мако

В связи с высокой плотностью воды давление с глубиной сильно растет. Глубоководные обитатели способны переносить давление, которое в ты-сячи раз выше, чем на поверхности суши.

Свет проникает в воду лишь на небольшую глубину, поэтому расти-тельные организмы могут существовать только в верхних горизонтах водной толщи. Даже в самых чистых морях фотосинтез возможен лишь до глубин в 100—200 м. На больших глубинах растений нет, а глубоко-водные животные обитают в полном мраке.

Температурный режим в водоемах более мягок, чем на суше. Из-за высокой теплоемкости воды колебания температуры в ней сглажены, и водные обитатели не сталкиваются с необходимостью приспосаб-ливаться к сильным морозам или сорокаградусной жаре. Только в горя-чих источниках температура воды может приближаться к точке кипе-ния.

Одна из сложностей жизни водных обитателей — ограниченное ко-личество кислорода. Его растворимость не очень велика и к тому же сильно уменьшается при загрязнении или нагревании воды. Поэтому в водоемах иногда бывают заморы — массовая гибель обитателей из-за не-хватки кислорода, которая наступает по разным причинам.

Замор рыбы

Солевой состав среды также очень важен для водных организмов. Морские виды не могут жить в пресных водах, а пресноводные — в мо-рях из-за нарушения работы клеток.

Наземно-воздушная среда жизни.

Эта среда отличается другим набором особенностей. Она в целом более сложна и разнообразна, чем водная. В ней много кислорода, много света, более резкие изменения тем-пературы во времени и в пространстве, значительно слабее перепады дав-ления и часто возникает дефицит влаги. Хотя многие виды могут летать, а мелкие насекомые, пауки, микроорганизмы, семена и споры растений переносятся воздушными течениями, питание и размножение организмов происходит на поверхности земли или растений. В такой малоплотной среде, как воздух, организмам необходима опора. Поэтому у наземных растений развиты механические ткани, а у наземных живот-ных сильнее, чем у водных, выражен внутренний или наружный скелет. Низкая плотность воздуха облегчает передвижение в нем. Активный и пассивный полет освоили около двух третей обитателей суши. Большинство из них — насекомые и птицы.

Черный коршун

Бабочка Калиго

Воздух — плохой проводник тепла. Этим облегчается возможность сохранения тепла, вырабатываемого внутри организмов, и поддержании постоянной температуры у теплокровных животных. Само развитие теплокровности стало возможным в наземной среде. Предки современны водных млекопитающих — китов, дельфинов моржей, тюленей — когда-то жили на суше.

У наземных обитателей очень разнообразны приспособления, связанные с обеспечением себя водой, особенно в засушливых условиях. У рас-тений это мощная корневая система, во-донепроницаемый слой на поверхности листьев и стеблей, способность к регуляции испарения во-ды через устьица. У животных это также различ-ные особенности строения тела и покровов, но, кроме того, поддержанию водного баланса способствует и соответст-вующее поведение. Они могут, например, совершать миграции к водопо-ям или активно избегать особо иссушающих условий. Некоторые животные могут жить всю жизнь вообще на сухом корме, как, напри-мер, тушканчики или всем известная платяная моль. В этом случае вода, необходимая организму, возникает за счет окисления составных частей пищи.

Корень верблюжьей колючки

В жизни наземных организмов большую роль играют и многие дру-гие экологические факторы, например состав воздуха, ветры, рельеф земной поверхности. Особо важны погода и климат. Обитатели наземно-воздушной среды должны быть приспособлены к климату той части Зем-ли, где они живут, и переносить изменчивость погодных условий.

Почва как среда жизни.

Почва представляет собой тонкий слой поверхности суши, переработанный деятельностью живых существ. Твердые частицы пронизаны в почве порами и полостями, заполненны-ми частично водой, а частично воздухом, поэтому почву способны насе-лять и мелкие водные организмы. Объем мелких полостей в почве — очень важная ее характеристика. В рыхлых почвах он может составлять до 70% , а в плотной — около 20%. В этих порах и полостях или на поверхности твердых частиц обитает огромное множество микроско-пических существ: бактерий, грибов, простейших, круглых червей, чле-нистоногих. Более крупные животные прокладывают в почве ходы сами.

Обитатели почвы

Вся почва пронизана корнями растений. Глубина почвы определяется глубиной проникновения корней и деятельностью роющих животных. Она составляет не более 1,5—2 м.

Воздух в почвенных полостях всегда насыщен водяными парами, состав его обогащен углекислым газом и обеднен кислородом. Этим условия жизни в почве напоминают водную среду. С другой стороны, соотношение воды и воздуха в почвах постоянно меняется в зависимости от погодных условий. Температурные колебания очень резки у поверх-ности, но быстро сглаживаются с глубиной.

Главная особенность почвенной среды — постоянное поступление ор-ганического вещества в основном за счет отмирающих корней растений и опадающей листвы. Это ценный источник энергии для бакте-рий, грибов и многих животных, поэтому почва — самая насыщенная жизнью среда. Ее скрытый от глаз мир очень богат и разнообразен.

Живые организмы как среда жизни.

Широкий лентец

Наземно-воздушная среда характеризуется особенностями экологических условий, сформировавших специфические приспособления у сухопутных растений и животных, что выразилось в разнообразии морфологических, анатомических, физиологических, биохимических и поведенческих адаптаций.

Низкая плотность атмосферного воздуха затрудняет поддержание формы тела, потому у растений и животных образовалась опорная система. У растений это механические ткани (лубяные и древесинные волокна), которые обеспечивают сопротивление статическим и динамическим нагрузкам: ветру, дождю, снежному покрову. Напряженное состояние клеточной стенки (тургор), вызванное накоплением в вакуолях клеток жидкости с высоким осмотическим давлением обусловливает упругость листьев, стеблей трав, цветков. У животных опору телу создает гидроскелет (у круглых червей), наружный скелет (у насекомых), внутренний (у млекопитающих).

Низкая плотность среды облегчает передвижение животных. Многие наземные виды способны к полету (активному или планирующему) - птицы и насекомые, есть и представители млекопитающих, амфибий и рептилий. Полет связан с передвижением и поиском добычи Активный полет возможен за счет модифицированных передних конечностей, развитых грудных мышц. У планирующих животных образовались между передними и задними конечностями сформировались кожные складки, которые растягиваются и играют роль парашюта.

Высокая подвижность воздушных масс сформировала у растений древнейший способ опыления растений ветром (анемофилия) характерную для многих растений средний полосы и расселения с помощью ветра. Эта экологическая группа организмов (аэропланктон) адаптировалась благодаря большой относительной площади поверхности за счет парашютиков, крыльев, выростов и даже паутины, либо за счет очень мелких размеров.

Низкое атмосферное давление, которое в норме составляет 760 мм ртутного столба (или 101 325 Па), малые перепады давления, сформировали почти у всех обитателей суши чувствительность к сильным перепадам давления. Верхняя граница жизни для большинства позвоночных животных - около 6 000 м. Снижение атмосферного давления с повышением высоты над уровнем моря уменьшает растворимость кислорода в крови. Это увеличивает частоту дыхания, а в результате частое дыхание приводит к обезвоживанию организма. Эта простая зависимость не характерна только для редких видов птиц и некоторых беспозвоночных.

Газовый состав наземно-воздушной среды отличается высоким содержанием кислорода (более чем в 20 раз выше, чем в водной среде). Это позволяет животным иметь очень высокий уровень обмена веществ. Поэтому только на суше могла возникнуть гомойтермность (способность поддерживать постоянную температуру тела, в основном, за счет внутренней энергии).



Значение температуры в жизни организмов определяется влиянием на скорость биохимических реакций. Повышение температуры (до 60 ° С) окружающей среды вызывает у организмов денатурацию белков. Сильное понижение температуры приводит к понижению скорости обмена веществ и как критическое состояние – замерзание воды в клетках (кристаллы льда в клетках нарушают целостность внутриклеточных структур). В основном на суше живые организмы могут существовать только в пределах 0 ° - +50 ° , т.к. эти температуры совместимы с протеканием основных процессов жизнедеятельности. Однако каждый вид имеет свое верхнее и нижнее летальное значение температуры, значение температурного угнетения и температурного оптимума.

Организмы, жизнедеятельность и активность которых зависят от внешнего тепла (микроорганизмы, грибы, растения, беспозвоночные, круглоротые, рыбы, земноводные, пресмыкающиеся) называются пойкилотермами. Среди них есть стенотермы (криофилы - приспособлены небольшим перепадам низких температур и термофилы - приспособлены небольшим перепадам высоких температур) и эвритермы, которые могут существовать при пределах большой температурной амплитуде. Приспособления к перенесению низких температур, позволяющие регулировать обмен веществ в течение длительного времени, осуществляется у организмов двумя способами: а) способность к биохимическим и физиологическим перестройкам - накопление антифризов, которые понижают точку замерзания жидкостей в клетках и тканях и следовательно препятствуют образованию льда; изменение набора, концентрации и активности ферментов, изменение; б) выносливость к замерзанию (холодостойкость) - это временное прекращение активного состояния (гипобиоз или криптобиоз) или накопление в клетках глицерина, сорбита, маннита, которые препятствуют кристаллизации жидкости.

У эвритермов хорошо развита способность перехода в латентное состояние при значительных отклонениях температуры от оптимального значения. После холодового угнетения организмы при определенной температуре восстанавливают нормальный обмен веществ, а это значение температуры называется температурным порогом развития, или биологическим нулем развития.

В основе сезонных перестроек у видов – эвритермов, имеющих широкое распространение, лежит акклимация (сдвиг температурного оптимума), когда происходит инактивация одних генов и включение других, отвечающих за замену одних ферментов другими. Это явление обнаруживается в разных частях ареала.

У растений метаболическое тепло крайне ничтожно, поэтому их существование определяется температурой воздуха в пределах местообитания. Растения адаптируются к перенесению достаточно больших колебаний температуры. Главным при этом является транспирация, охлаждающая поверхность листьев при перегреве; уменьшение листовой пластинки, подвижность листа, опушение, восковой налет. К холодным условия растения приспосабливаются с помощью формы роста (карликовость, подушковидный рост, шпалерность), окраски. Все это относится к физической терморегуляии. Физиологическая терморегуляция – это опад листвы, отмирание наземной части, перевод свободной воды в связанное состояние, накопление антифризов и т. д.).

Пойкилотермные животные имеют возможность испарительной терморегуляции, связанной с их перемещением в пространстве (земноводные, рептилии). Они выбирают наиболее оптимальные условия, производят много внутреннего (эндогенного) тепла в процессе сокращения мускулатуры или мышечной дрожи (разогревают мышцы во время передвижения). Животные имеют поведенческие адаптации (поза, укрытия, норы, гнезда).

Гомойтермные животные (птицы и млекопитающие) имеют постоянную температуру тела и мало зависят от температуры окружающей среды. Для них характерны адаптации, основанные на резком повышении окислительных процессов в результате совершенства нервной, кровеносной, дыхательной и других систем органов. У них существует биохимическая терморегуляция (при понижении температуры воздуха усиливается обмен липидов; усиливаются окислительные процессы, особенно в скелетных мышцах; есть специализированная бурая жировая ткань, в которой вся освобождающаяся химическая энергия идет на образование АТФ, а на обогревание организма; увеличивается объем потребляемой пищи). Но такая терморегуляция имеет климатические ограничения (невыгодна зимой, в полярных условия, летом в тропическом и экваториальном поясах).

Экологически выгодна физическая терморегуляция(рефлек-торное сужение и расширение кровеносных сосудов кожи, теплоизоляционное действие меха и перьев, противоточный теплообмен), т.к. осуществляется за счет сохранения тепла в теле (Чернова, Былова, 2004).

Поведенческая терморегуляция гомойтермов характеризуется разнообразием: изменение позы, поиски укрытий, сооружение сложных нор, гнезд, миграции, групповое поведение и пр.

Важнейшим экологическим фактором для организмов является свет. Процессы, протекающие под действием света - это фотосинтез (используется 1-5% падающего света), транспирация (используется 75% падающего света расходуется на испарение воды), синхронизация жизнедеятельности, движение, зрение, синтез витаминов.

Морфология растений и структура растительных сообществ организованы для наиболее эффективного восприятия солнечной энергии. Светоприемная поверхность растений Земного шара в 4 раза больше, чем поверхность планеты (Акимова, Хаскин, 2000). Для живых организмов имеет значение длина волн, т.к. лучи разной длины имеют разное биологическое значение: инфракрасное излучение (780 – 400 нм) действует на тепловые центры нервной системы, регулируя окислительные процессы, двигательные реакции и др, ультрафиолетовые лучи (60 - 390 нм) действуя на покровные ткани, способствуют выработке различных витаминов, стимулируют рост и размножение клеток.

Особое значение имеет видимый свет, т.к. для растений важен качественный состав света. В спектре лучей выделяют фотосинтетическую активную радиацию (ФАР). Длина волн этого спектра лежит в пределах 380 – 710 (370- 720 нм).

Сезонная динамика освещенности связана с закономерностями астрономического характера, сезонной климатической ритмикой данной местности и на разных широтах выражена по разному. Для нижних ярусов на эти закономерности налагается и фенологическое состояние растительности. Большое значение имеет суточный ритм изменения освещенности. Ход радиации нарушается изменениями состояния атмосферы, облачности и др. (Горышина,1979).

Растение представляет собой непрозрачное тело, которое частично отражает свет, поглощает и пропускает. В клетках и тканях листьев есть различные образования которые обеспечивают поглощение и пропускание света Для повышения продуктивности растения увеличивают общую площадь и количество фотосинтезирующих элементов, что достигается многоэтажным расположением листьев на растении; ярусным расположением растений в сообществе.

По отношению к силе освещения выделяют три группы: светолюбивые, тенелюбивые, теневыносливые, которые отличаются анатомо-морфологическими адаптациями (у светолюбивых растений листья - мельче, подвижные, опушенные, имеют восковой налет, толстую кутикулу, кристаллические выключения и др. у тенелюбивых - листья крупные, хлоропласты крупные и многочисленные); физиологическими адаптациями (разные значения световой компенсации).

Реакция на длину светового дня (продолжительность освещения) называется фотопериодизмом. У растений такие важные процессы как цветение, образование семян, рост, переход в состояние покоя, листопад связан с сезонными изменениями длины дня и температурой. Для цветения одних растений нужна длина дня свыше 14 часов, для других достаточно 7 часов, третьи цветут независимо от длины дня.

Для животных свет информационное значение. Прежде всего по суточной активности животные делятся на дневных, сумеречных, ночных. Органом, помогающим ориентироваться в пространстве, являются глаза. У разных организмов разное стереоскопическое зрение - у человека общее зрение 180 ° - стереоскопическое-140 ° , у кролика - общее 360 ° , стереоскопическое20 ° . Бинокулярное зрение в основном характерно для хищных животных (кошачьих и птиц). Кроме того, реакцией на свет определяется фототаксис (движение на свет),

размножение, навигация (ориентирование на положение Солнца), биолюминенценция. Свет является сигналом для привлечения особей другого пола.

Важнейшим экологическим фактором в жизни наземных организмов является вода. Она необходима для поддержания структурной целостности клеток, тканей, всего организма, т.к. является основной частью протоплазмы клеток, тканей, растительных и животных соков. Благодаря воде осуществляются биохимические реакции, поступление питательных веществ, газообмен, выделение и др. Содержание воды в организме растений и животных достаточно высокое (в листьях трав - 83-86%, листьях деревьев - 79-82%. стволах деревьев 40-55%, в телах насекомых - 46-92%, земноводных – до 93%, млекопитающих - 62-83%).

Существование в наземно-воздушной среде ставит перед организмами важную проблему сохранения воды в теле. Поэтому форма и функции растений и животных суши приспособлены к защите от иссушения. В жизни растений важно поступление воды, проведение ее и транспирация, водный баланс, (Вальтер, 1031,1937, Шафер, 1956). Изменения водного баланса лучше всего отражает сосущая сила корней.

Растение может всасывать воду из почвы до тех пор, пока сосущая сила корней может конкурировать с сосущей силой почвы. Сильно разветвленная корневая система обеспечивает большую площадь соприкосновения поглощающей части корня с почвенными растворами. Общая протяженность корней может достигать 60 км. Сосущая сила корней меняется в зависимости от погоды, от экологических свойств. Чем больше всасывающая поверхность корней, тем больше поглощается воды.

По регуляции водного баланса растения делятся на пойкилогидрические (водоросли, мхи, папоротники, некоторые цветковые) и гомойгидрические (большинство высших растений).

По отношению к водному режиму выделяют экологические группы растений.

1. Гигрофиты - наземные растения, обитающие во влажных местообитаниях с высокой влажностью воздуха и почвенным водоснабжением. Характерными признаками гигрофитов являются толстые слаборазветвленные корни, воздухоносные полости в тканях, открытые устьица.

2. Мезофиты-растения умеренно увлажненных местообитаний. Способность переносить почвенную и атмосферную засуху у них ограничены. Могут встречаться в засушливых местообитаниях - быстро развиваясь за короткий период. Характерна хорошо развитая корневая система с многочисленными корневыми волосками, регуляция интенсивности транспирации.

3. Ксерофиты - растения сухих местообитаний. Это засухоустойчиваые растения, сухотерпцы. Степные ксерофиты могут терять без ущерба до 25 % воды, пустынные - до 50% содержащейся в них воды (для сравнения лесные мезофиты увядают при потере 1% содержащейся в листьях воды). По характеру анатомо-морфологических и физиологических адаптаций, обеспечивающих активную жизнь этих растений при дефиците влаги, ксерофиты делятся на суккуленты (имеют мясистые и сочные листья и стебли, способны накапливать в тканях большое количество воды, развивают небольшую сосущую силу и впитывают влагу атмосферных осадков) и склерофиты (сухие на вид растения, интенсивно испаряющие влагу, имеют узкие и мелкие листья, которые иногда сворачиваются в трубочку, способны выдерживать сильное обезвоживание, сосущая сила корней может быть до нескольких десятков атмосфер).

У разных групп животных в процессе приспособления к условиям наземного существования главным было предотвращение потерь воды. Животные получают воду разными способами – через питье, с сочной пищей, в результате метаболизма (за счет окисления и расщепления жиров, белков и углеводов). Некоторые животные могут впитывать воду через покровы из влажного субстрата или воздуха. Потери воды происходят в результате испарения с покровов, испарения со слизистых оболочек дыхательных путей, выделения мочи и непереваренных остатков пищи. Животные, получающие воду через питье, зависят от расположения водоемов (крупные млекопитающие, многие птицы).

Важным фактором для животных является влажность воздуха, т.к. этот показатель определяет величину испарения с поверхности тела. Именно поэтому для водного баланса организма животных имеет значение строение покровов тела. У насекомых уменьшение испарения воды с поверхности тела обеспечивает почти непроницаемая кутикула и специализированные органы выделения (мальпигиевы трубочки), выделяющие почти нерастворимый продукт обмена, и дыхальца, уменьшающие потери воды через систему газообмена - через трахеи и трахеолы.

У амфибий основная масса воды в организм поступает через проницаемую кожу. Проницаемость кожи регулируется гормоном, который выделяется задней долей гипофиза. Амфибии выделяют очень большое количество разбавленной мочи, гипотоничной по отношению к жидкостям тела. В засушливых условиях амфибии могут уменьшать потери воды с мочой. Кроме того, эти животные могут накапливать воду в мочевом пузыре и подкожных лимфатических пространствах.

Рептилии обладают множеством адаптаций разного уровня - морфологических (потере воды препятствует ороговевшая кожа), физиологических (легкие, расположенные внутри тела, что снижает потери воды), биохимических (в тканях образуется мочевая кислота, которая выводится без большой потери влаги, ткани способны переносить повышение концентрации солей на 50%).

У птиц скорость испарения невелика (кожа относительно непроницаема для воды, отсутствуют потовые железы и перья). Птицы теряют воду (до 35% веса тела за сутки) при дыхании из-за высокой вентиляции в легких и высокой температурой тела. У птиц есть процесс реабсорбции воды из части воды из мочи и фекалий. У некоторых морских птиц (пингвины, олуши, бакланы, альбатросы), которые питаются рыбой и пьют морскую воду, есть солевые железы, расположенные в глазницах, с помощью которых выводится избыток солей из организма.

У млекопитающих органами выделения и осморегуляции служат парные сложно устроенные почки, которые снабжаются кровью и регулируют состав крови. Это обеспечивает постоянный состав внутриклеточной и внутритканевой жидкости. Относительно стабильное осмотическое давление крови поддерживается за счет баланса между поступлением воды с питьем и потерей воды с выдыхаемым воздухом, потом, выделяемыми калом и мочой. Ответственным за тонкую регуляцию осмотического давления является антидиуретический гормон (АДГ), который выделяется из задней доли гипофиза.

Среди животных выделяют группы: гигрофилов, у которых механизмы регуляции водного обмена слабо развиты или вообще отсутствуют (это влаголюбивые животные, нуждающиеся в высокой влажности среды - ногохвостки, мокрицы, комары, другие членистоногие, наземные моллюски и амфибии); ксерофилов, имеющих хорошо развитые механизмы регуляции водного обмена и приспособления к удержанию воды в теле, обитающих в засушливых условиях; мезофилов, обитающих в условиях умеренной влажности.

Косвенно действующим экологическим фактором в наземно-воздушной среде является рельеф. Все формы рельефа влияют на распространение растений и животных через изменение гидротермического режима или почвенно-грунтового увлажнения.

В горах на разной высоте над уровнем моря изменяются климатические условия, следствием чего является высотная поясность. Географическая изоляция в горах способствует образованию эндемиков, сохранению реликтовых видов растений и животных. Речные поймы способствую продвижению на север более южных группировок растений и животных. Большое значение имеет экспозиция склонов, которая создает условия для распространения на север по южным склонам теплолюбивых сообществ, а по северным склонам на юг холодолюбивых сообществ («правило предварения», В.В. Алехина).

Почва существует только в наземно-воздушной среде и формируется в результате взаимодействия возраста территории, материнской породы, климата, рельефа, растений и животных, деятельности человека. Экологическое значение имеет механический состав (размер минеральных частиц), химический состав (рН водного раствора), засоление почв, почвенное богатство. Характеристики почв также действуют на живые организмы как косвенные факторы, изменяя термо-гидрологический режим, вызывая у растений (в первую очередь) приспособления к динамике этих условий и влияя на пространственную дифференциацию организмов.

В наземно-воздушной среде особенно большое влияние на организмы оказывает температура. Поэтому у обитателей холодных и жарких районов Земли выработались различные приспособления для сохранения тепла или, наоборот, для отдачи его избытка.

Приведи несколько примеров.

Температура растения вследствие нагревания солнечными лучами может быть выше температуры окружающего его воздуха и почвы. При сильном испарении температура растения становится ниже температуры воздуха. Испарение через устьица - регулируемый растением процесс. При повышении температуры воздуха она усиливается, если возможна быстрая подача необходимого количества воды к листьям. Это спасает растение от перегрева, понижая его температуру на 4-6, а иногда на 10-15 °С.

При сокращении мышц освобождается значительно больше тепловой энергии, чем при функционировании любых других органов и тканей. Чем мощнее и активнее мускулатура, тем больше тепла может генерировать животное. По сравнению о растениями животные обладают более разнообразными возможностями регулировать, постоянно или временно, температуру собственного тела.

Переменой позы животное может усилить или ослабить нагревание тела за счет солнечной радиации. Например, пустынная саранча в прохладные утренние часы подставляет солнечным лучам широкую боковую поверхность тела, а в полдень - узкую спинную. В сильную жару животные прячутся в тень, скрываются в норах. В пустынях днем, например, некоторые виды ящериц и змей взбираются на кусты, избегая соприкосновения с раскаленной поверхностью почвы. К зиме многие животные ищут убежища, где ход температур более сглажен по сравнению с открытыми местами обитания. Еще более сложны формы поведения общественных насекомых: пчел, муравьев, термитов, которые строят гнезда с хорошо регулируемой внутри них температурой, почти постоянной в период активности насекомых.

Густой мех млекопитающих, перьевой и особенно пуховый покров птиц позволяют сохранять вокруг тела прослойку воздуха с температурой, близкой к температуре тела животного, и тем самым уменьшить теплоизлучение во внешнюю среду. Теплоотдача регулируется наклоном волос и перьев, сезонной сменой меха и оперения. Исключительно теплый зимний мех животных Заполярья позволяет им в холода обходиться без повышения обмена веществ и снижает потребность в пище.

Назови известных тебе обитателей пустыни.

В пустынях Средней Азии небольшой кустарник - саксаул. В Америке - кактусы, в Африке - молочаи. Животный мир небогат. Преобладают рептилии - змеи, вараны. Встречаются скорпионы, млекопитающих мало(верблюд).

1. Продолжи заполнение таблицы «Среды обитания живых организмов» (см. домашнее задание к § 42).




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top