Функциональное мрт головного мозга. Что такое функциональная магнитно-резонансная томография (Ф-я МРТ)? Огромный мир новых возможностей

Функциональное мрт головного мозга. Что такое функциональная магнитно-резонансная томография (Ф-я МРТ)? Огромный мир новых возможностей

Дает исследователю очень много информации об анатомическом строении органа, ткани или другого объекта, который попадает в поле видимости. Однако, чтобы сложилась целостная картина происходящих процессов, не хватает данных о функциональной активности. И для этого как раз существует BOLD-функциональная магнитно-резонансная томография (BOLD - blood oxygenation level dependent contrast, или контрастность, зависящая от степени насыщения крови кислородом).

BOLD фМРТ - это один из наиболее применимых и широко известных способов определять мозговую активность. Активация приводит к усилению местного кровотока с изменением относительной концентрации оксигенированного (обогащенного кислородом) и дезоксигенированного (бедного кислородом) гемоглобина в местном кровотоке.

Рис.1. Схема реакции мозгового кровотока в ответ на возбуждение нейронов.

Дезоксигенированная кровь является парамагнетиком (веществом, способным намагничиваться) и ведет к падению уровня сигнала МРТ. Если же в области мозга больше оксигенированной крови – уровень МРТ-сигнала увеличивается. Таким образом, кислород в крови выполняет роль эндогенного контрастного вещества.

Рис.2. Объём мозгового кровоснабжения (а ) и BOLD- ответ фМРТ (b ) при активации первичной моторной коры человека . Сигнал проходит в 4 стадии . 1 стадия вследствие активации нейронов повышается потребление кислорода , увеличивается количество дезоксигенированной крови , BOLD сигнал немного уменьшается (на графике не показано , уменьшение незначительное ). Сосуды расширяются , вследствие чего несколько уменьшается кровоснабжение мозговой ткани . Стадия 2 длительное увеличение сигнала . Потенциал действия нейронов заканчивается , но поток оксигенированной крови увеличивается инерционно , возможно вследствие воздействия биохимических маркеров гипоксии . Стадия 3 длительное снижение сигнала вследствие нормализации кровоснабжения . 4 стадия постстимульный спад вызван медленным восстановлением первоначального кровоснабжения.

Для активации работы нейронов в определённых областях коры существуют специальные активирующие задания. Дизайн заданий, как правило, бывает двух видов: «block» и «event-related». Каждый вид предполагает наличие двух чередующихся фаз - активного состояния и покоя. В клинической фМРТ чаще используются задания вида «block». Выполняя такие упражнения, испытуемый чередует так называемые ON- (активное состояние) и OFF- (состояние покоя) периоды одинаковой или неравной продолжительности. Например, при определении области коры, отвечающей за движения рук, задания состоят из чередующихся движений пальцами и периодов бездействия, продолжительностью в среднем около 20 секунд. Действия повторяют несколько раз для увеличения точности результата фМРТ. В случае задания «event-related» испытуемый выполняет одно короткое действие (например, глотание или сжатие кулака), за которым следует период покоя, при этом действия, в отличие от блокового дизайна, чередуются неравномерно и непоследовательно.

На практике BOLD фМРТ используется при предоперационном планировании резекции (удаления) опухолей, диагностике сосудистых мальформаций, при операциях при тяжелых формах эпилепсии и других поражений головного мозга. В ходе операции на головном мозге важно максимально точно удалить участок поражения, в то же время избегая излишнего повреждения соседних фунционально важных участков головного мозга.


Рис.3.

а трёхмерное МРТ изображение головного мозга . Стрелкой указано расположение моторной коры в прецентральной извилине .

b карта фМРТ активности мозга в прецентральной извилине при движении рукой.

Метод очень эффективен при изучении дегенеративных заболеваний, например, болезней Альцгеймера и Паркинсона, особенно на ранних стадиях. Он не предполагает использования ионизирующего излучения и рентгеноконтрастных веществ, к тому же, он неинвазивен. Поэтому его можно считать довольно безопасным для пациентов, которые нуждаются в длительных и регулярных фМРТ-обследованиях. ФМРТ можно применять для исследования механизмов формирования эпилептических приступов и позволяет избежать удаления функциональной коры у больных с трудноизлечимой эпилепсией лобной доли. Наблюдение за восстановлением мозга после инсультов, изучение влияния лекарственных средств или другой терапии, наблюдение и контроль лечения психиатрических заболеваний – это далеко не полный перечень возможного применения фМРТ. Кроме этого, существует еще фМРТ покоя, в которой сложная обработка данных позволяет увидеть сети мозга, функционирующие в состоянии покоя.

Источники:

  1. How well do we understand the neural origins of the fMRI BOLD signal? Owen J.Arthur, Simon Boniface. TRENDS in Neurosciences Vol.25 No.1 January 2002
  2. The physics of functional magnetic resonance imaging (fMRI) R. B. Buxton. Rep. Prog. Phys. 76 (2013)
  3. Применение функциональной магнитно-резонансной томографии в клинике. Научный обзор. Беляев А., Пек Кюнг К., Бреннан Н., Холодный А. Russian electronic journal of radiology. Том 4 №1 2014г.
  4. Мозг, познание, разум: введение в когнитивные нейронауки. Часть2 . Б. Баарс, Н. Гейдж. М.: Бином. 2014г. С. 353-360.

Текст: Дарья Прокудина

Функциональная магнитно-резонансная томография, или Ф-я МРТ , является методом для изучения мозговой деятельности. Он работает путем обнаружения изменений в оксигенации крови и её потоке , который возникают в ответ на нервную деятельность – это когда области мозга более активно потребляют больше кислорода и чем больше активна та или иная область мозга, тем больше она требует притока крови. Функциональная МРТ может быть использована для получения активной карты мозга, показывающей, какая часть мозга участвует в тех или иных психических процессах.

Развитие функциональной МРТ в 1990-х, обычно приписывают Сейджи и Кен Огава Квонгу, они является последним в длинной череде нововведений, в том числе в области позитронно-эмиссионной томографии (ПЭТ) и инфракрасной спектроскопии (НИРС) , которые используют кровотока и кислородный обмена, чтобы захватить мозговую деятельность. В качестве методики визуализации головного мозга, функциональная МРТ имеет несколько значительных преимуществ:

1. Это неинвазивный метод и не влечет за собой излучения, что делает его безопасным для субъекта.
2. Он имеет отличное пространственное и временное разрешение.
3. Его легко для использовать для исследований.

Исключительность функциональной МРТ сделала его популярным инструментом для работы с изображениями нормальной функции мозга — особенно для психологов. За последнее десятилетие метод функциональной МРТ предоставил новый взгляд на исследование того, как формируются воспоминания, язык, боль, обучение и эмоции, этот список можно продолжить. Функциональная МРТ также применяется в клинической практике и в коммерческих условиях.

Как функциональная МРТ работает?

В цилиндрической трубке томографа находится очень мощный электромагнит. Типичное сканирование имеет напряженность поля 3 тесла (Т), это около 50 000 раз больше, чем магнитное поле Земли. Магнитное поле сканера влияет на ядра атомов. Обычно атомные ядра ориентированы случайным образом, но под влиянием магнитного поля ядра становятся совмещенными с направлением поля. Чем сильнее поле, тем больше степень согласованности. При наведении в том же направлении, крошечные магнитные сигналы от отдельных ядер когерентно складываются, в результате чего сигнал становится достаточно большим, чтобы его измерить. В МРТ именно магнитный сигнал от ядер водорода в водной среде (H2O), может его обнаружить.

Механизмом действия МРТ является то , что сигнал от ядер водорода изменяется в силу в зависимости от его окружения. Это обеспечивает возможность рассмотреть серое вещество, белое вещество и спинномозговую жидкость в виде структурных изображений мозга.

Кислород поступает в нейроны с помощью гемоглобина из капиллярной сети. Когда активность нейронов увеличивается, возникает повышенный спрос на кислород и это проявляется в виде местной реакции, как увеличение притока крови к области, где происходит повышенная нервная деятельность.

Гемоглобин изменяет магнитное поле когда он насыщен кислородом, и когда нет. Это различие в магнитных свойствах приводит к небольшим изменениям в сигнале МРТ в зависимости от степени оксигенации. Так как оксигенация крови изменяется в зависимости от уровня нейронной активности, эти различия могут быть использованы для фиксирования деятельности мозга. Эта форма МРТ известна как оксигенация крови в зависимости от уровня насыщения кислородом.

МРТ BOLD(отчётливый) Эффект

Еще один момент: это направление изменения оксигенации с повышенной активностью. Можно было бы ожидать, что оксигенации крови уменьшается с её активацией магнитным полем, но реальность намного сложнее. Существует мгновенное снижение уровня оксигенации крови сразу же после того, как нейронная активность возрастает, она известна как «начальный провал» в гемодинамическом ответе. За этой фазой следует период, когда увеличивает приток крови, не только к месту, где потребность в кислороде удовлетворяется, но и к окружающим тканям. Это означает, что оксигенации крови на самом деле увеличивает последующую нейронную активацию.

Как МРТ сканирования выглядит?

МРТ сканирование

Изображение, показанное здесь является результатом простой функциональной МРТ . В то время, как человек лежит в томографе за ним наблюдает экран, который чередуется визуальными показами и становится темным каждые 30 секунды. Между тем томограф отслеживает сигнал по всему мозгу. Визуализируются области мозга, которые реагируют на стимулы, когда сигнал идет вверх и вниз, и они как бы включается и выключается, хотя и становятся немного размытыми из-за задержки в ответе кровотока.

Исследователи смотрят на активность при сканировании в виде вокселов — или объемных пикселей, наименее различимой коробчатой части трехмерного изображения. Активность в вокселях определяется, как насколько близко ход сигнал от этого вокселя соответствует ожидаемому времени.

    МРТ изображение головы человека Магнитно резонансная томография (МРТ, MRT, MRI) томографический метод исследования внутренних органов и тканей с использованием физического явления ядерного магнитного резонанса … Википедия

    - (др. греч. τομή сечение) метод неразрушающего послойного исследования внутренней структуры объекта посредством его многократного просвечивания в различных пересекающихся направлениях. Содержание 1 Терминологические вопросы … Википедия

    - … Википедия

    Наука, изучающая связь активности головного мозга и других сторон нервной системы с познавательными процессами и поведением. Особое внимание когнитивная нейробиология уделяет изучению нейронной основы мыслительных процессов. Когнитивная… … Википедия

    фМРТ - функциональная магнитно резонансная томография фМРТ ФМРТ функциональная магнитно резонансная томография … Словарь сокращений и аббревиатур

    1. Полушарие большого мозга (Конечный мозг) 2. Таламус (… Википедия

    Электроэнцефалограф медицинский электроизмерительный прибор, с помощью которого измеряют и регистрируют разность потенциалов между точками головного мозга, располагающимися в глубине или на его поверхности. Образование и колебание… … Википедия

    Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения … Википедия

    ФМРТ функциональная магнитно резонансная томография. Метод ФМРТ базируется на возможности использования магнитного резонанса не только для изучения анатомической структуры головного мозга, но и для оценки кровообращения, изменение которого… … Википедия

Функциональная МРТ головного мозга с 1990-х годов прошлого века получила широкое распространение. Внедрение методики способствовало выявлению некоторых злокачественных образований (опухолей), которые другими методами выявить сложнее. Особенностями функциональных магнитно-резонансных исследований мозговой ткани является оценка изменений кровоснабжения вследствие изменения нейронной стимуляции спинного и головного мозга. Возможность получения качественных результатов при МР-томографии обусловлена усилением притока крови к области мозга, которая активно действует.

Специалисты изучили нормальную активность коры головного мозга, состояние ткани при опухолях, что позволило провести дифференциальную диагностику патологии. Отличия МР-сигнала в норме и при патологических состояниях делают нейровизуализацию незаменимым диагностическим методом.

Нейровизуализация стала разрабатываться в 1990-ом году, когда функциональная МРТ стала активно использоваться для диагностики образований головного мозга вследствие высокой достоверности, отсутствия лучевого облучения пациента. Единственным неудобством метода является необходимость длительного пребывания пациента на диагностическом столе.

Морфологические основы функциональной МРТ головного мозга

Глюкоза не является важным субстратом для работы головного мозга, но при ее отсутствии нарушается функционирование нейронных каналов, которые обеспечивают физиологическую работу мозговой ткани.

Глюкоза поступает к клеткам по сосудам. Одновременно в мозг попадает кислород, связанный молекулой гемоглобина эритроцитов. Молекулы кислорода участвуют в процессах тканевого дыхания. После потребления кислорода мозговыми клетками возникает окисление глюкозы. Биохимические реакции при тканевом дыхании способствуют изменению магнетизации тканей. Индуцированный МРТ-процесс регистрируется программным обеспечением, что позволяет получить трехмерное изображение с тщательной прорисовкой каждой отдельной детали.

Изменение магнитных свойств крови возникает практически при всех злокачественных образованиях головного мозга. Избыточный приток крови определяется программным обеспечением при сравнении с нормальными величинами. Физиологически прослеживается разный МР-сигнал от поясной коры, таламуса, базальных ганглиев.

Низкий поток прослеживается в париетальной, латеральной, лобной доле. Изменение микроциркуляции данных областей сильно изменяет чувствительность сигнала.

Функциональная диагностика МРТ зависит от состояния и количества гемоглобина в исследуемой области. Молекула вещества может содержать кислород или его альтернативные заменители. Под действием сильного магнитного поля происходит колебание кислорода, что искажает качество сигнала. Намагниченность канала приводит к быстрому полураспаду кислорода. Воздействие сильного магнитного поля усиливает период полураспада вещества.

На основе информации можно сделать вывод относительно более высокого качества МР-сигнала в областях мозга, которые насыщены кислорода. Злокачественные мозговые образования имеют густую сосудистую сеть, поэтому хорошо визуализируются на томограммах. Для качественных результатов интенсивность магнитного поля должно быть выше 1,5 Тесла. Последовательность импульсов приводит к повышению полураспада.

Активность МР-сигнала, регистрируемого от активности нейронов, носит название «гемодинамический ответ». Термин определяет скорость нейронных процессов. Физиологическое значение параметра – 1-2 секунды. Данный интервал недостаточен для качественной диагностики. Чтобы получить хорошую визуализацию при объемных образованиях мозга магнитно-резонансная диагностика проводится с дополнительным стимулированием глюкозой. После ее введения пик активности наблюдается через 5 секунд.

Функциональная диагностика МРТ при раке мозга

Применение МРТ в нейрорадиологии расширяется. Для диагностики опухолей головного и спинного мозга применяется не только функциональное исследование. В последнее время активное распространение получили современные способы:

Перфузионно-взвешенная;
Диффузионная;
Контрастно-насыщенное исследование (BOLD).

Контрастирование BOLD после насыщения кислородом помогает провести диагностику активности сенсорной, моторной коры, очагов речи Вернике и Брока.

Способ базируется на регистрации сигнала после специфической стимуляции. Функциональная диагностика МРТ при сравнении с другими способами (ПЭТ, эмиссионная КТ, электроэнцефалография) Функциональное МРТ помогает получить картинку с пространственным разрешением.

Для понятия сути графической картины мозга при магнитно-резонансной томографии проводим изображения мозговой ткани после МРТ после чтения «сырых» изображений (а), совмещения нескольких томограмм (б).

Двигательная активность мозговой коры после использования способа корреляционных коэффициентов позволяет получить пространственное изображение результатов с визуализацией зон повышенной магнитной активности. Область Брока при функциональной МРТ определяется после обработки «сырых» томограмм. Стимуляция корреляционных коэффициентов помогает генерировать график соотношения интенсивности сигнала в определенном временном промежутке.

На следующих томограммах прослеживается картина у пациента при апластической эпендимоме – опухолью с повышенным смещением возбудимости в зоне, которая отвечает за активность функциональной коры мозга.

График показывает активные области, в которых локализуется злокачественное новообразование. После получения данных томограмм для иссечения патологической области была проведена субтотальная резекция.

На следующих МР-томограммах изображена глиобластома. Функциональная диагностика позволяет качественно визуализировать данное образование. В данной области располагает зона, отвечающая за активность пальцев правой руки. На изображениях визуализируется усиление активности в областях после стимуляции глюкозой. Функциональная магнитно-резонансная диагностика при глиобластоме в данном случае позволила точно визуализировать локализацию, размеры образования. Расположение рака в моторной коре приведет к отказу движений пальцев правой руки при возникновении атипичных клеток в коре головного мозга.

При некоторых образованиях функциональная МРТ головного мозга показывает несколько десятков разных изображений, возникающих вследствие динамического изменения МР-сигнала с искажением до 5%. При таком разнообразии сложно установить правильность расположения патологического образования. Для исключения субъективности зрительной оценки требуется программная обработка «сырых» снимков, полученная с использованием статистических способов.

Для получения качественных результатов при функциональной диагностике МРТ в сравнении с традиционным аналогом требуется помощь пациента. При тщательной подготовке повышается метаболизм глюкозы и кислорода, что снижает количество ложноположительных результатов, артефактов.

Высокое техническое оснащение магнитно-резонансных томографов позволяет улучшить картинку.

Самый частый вариант применения функциональной магнитно-резонансной томографии – это визуализация основных зон активности коры головного мозга – зрительной, речевой, моторной.

Функциональное МРТ исследование головного мозга – клинические эксперименты

Зрительная стимуляция корковых зон с помощью функционального МРТ по методу «J.Belliveau» предполагает зрительную стимуляцию с использованием болюстного контрастирования препаратом гадолинием. Подход позволяет регистрировать падение эхо-сигнала вследствие разной чувствительности между контрастом, проходящим по сосудам и окружающим тканям.

Клинические исследования установили, что зрительная стимуляция корковых зон на свету и в темноте сопровождается разницей активности примерно на 30%. Такие данные получены при обследовании на животных.

Эксперименты были основаны на методику определения сигнала, полученного от дезоксигемоглобина, обладающего парамагнитными способностями. На протяжении первых 5 минут после стимулирования мозговой активности глюкозой активируется процесс анаэробного гликолиза.

Стимуляция приводит к повышению перфузионной активности нейронов, так как микроциркуляция после поступления глюкозы существенно усиливается за счет падения концентрации дезоксигемоглобина – вещества, переносящего углекислый газ.

На Т2-взвешенных томограммах прослеживается увеличение активности сигнала – методика получила название BOLD-контрастирование.

Такая методика функционального контрастирования не является совершенной. При планировании нейрохирургических операций на опухолях требуется проведение обычного и функционального исследования.

Сложности функциональной магнитно-резонансной томографии заключаются в необходимости пациента выполнять активирующие действия. Для этого через переговорное устройство оператор передает задание, которое человек должен сделать с особой тщательностью.

Тренировку пациента необходимо проводить до функционального МРТ исследования. Заранее требуется умственный покой, подготовка двигательной активности.

Статистическая обработка результатов при правильном выполнении позволяет тщательно обследовать «сырые» томограммы, составлять на их основе трехмерное изображение. Для грамотной оценки значений нужно проводить не только структурную, но и функциональную оценку состояния коры головного мозга. Результаты обследования оцениваются одновременно нейрохирургом и неврологом.

Внедрению МРТ с функциональными пробами в массовую медицинскую практику не позволяют ограничения:

1. Высокие требования к томографу;
2. Отсутствие стандартизированных разработок относительно заданий;
3. Появление ложных результатов, артефактов;
4. Выполнение человеком непроизвольных движений;
5. Наличием в теле металлических предметов;
6. Потребность в дополнительных звуковых и визуальных стимуляторах;
7. Высокая чувствительность металлов к эхо-планарным последовательностям.

Перечисленные противопоказания ограничивают распространение исследования, но их можно устранить путем тщательной разработки рекомендаций к МРТ.

Основные цели проведения функционального магнитно-резонансной томографии:

Анализ локализации патологического очага для прогнозирования хода хирургического вмешательства при опухоли, оценки функциональной активности;
Планирование краниотомии в областях на удалении от зон основной активности мозга (зрительная, речевая, моторная, чувствительная);
Выбор группы людей для инвазивного картирования.

Функциональные исследования существенно коррелируют с прямой стимуляцией корковой активности мозговой ткани специальными электродами.

Максимальный интерес представляет функциональная МРТ для российских врачей, так как картирование в нашей стране только начинает развиваться. Для планирования оперативной активности магнитно-резонансное исследование с функциональными пробами представляет большой интерес.

Таким образом, функциональные исследования МРТ в нашей стране находятся на уровне практических проб. Частое использование процедуры наблюдается при супратенториальных опухолях, когда МРТ исследование является необходимым дополнением предоперационного этапа.

В заключение выделим современные аспекты развития технологии «мозг-компьютер». На основе данной технологии разрабатывается «компьютерный симбиоз». Сочетание электроэнцефалографии и МРТ позволяет создать полноценную картинку функционирования головного мозга. С помощью наложения одного исследования на другое получается качественная картинка, указывающая на соотношение анатомических и функциональных особенностей работы нейронов.

> Функциональная МРТ (магнитно-резонансная томография)

Данная информация не может использоваться при самолечении!
Обязательно необходима консультация со специалистом!

Что выявляет функциональная МРТ?

Функциональная МРТ - это одна из разновидностей магнитно-резонансной томографии, специализирующаяся на фиксации изменений в работе головного мозга в зависимости от его активности.

При активизации работы определенных отделов мозга насыщение тканей кислородом и скорость тока крови в них усиливаются, и, соответственно, возрастает интенсивность сигнала, улавливаемого томографом. В результате фиксации этих изменений удается получить изображения, которые затем накладываются на снимки, полученные в результате обычной МРТ. Сочетание трехмерной компьютерной графики и данного метода дают возможность составить развернутую на плоскости функциональную карту практически всей коры головного мозга.

Функциональная МРТ дает возможность оценить и сравнить активность определенной зоны головного мозга в период покоя с активностью, вызванной влиянием отдельных факторов, например, умственной деятельности или двигательной активности.

При помощи данного вида диагностики можно определить индивидуально для каждого пациента расположение мозговых центров - речевых, двигательных, сенсорных и других. Хирурги на основании результатов исследования могут составить план предстоящей операции на мозге, максимально предотвратив различные осложнения, например, повреждения разговорного и двигательного центров. Радиологи имеют возможность точно рассчитать дозу облучения при лечении раковых новообразований.

Показания к проведению функциональной МРТ

Показаниями к проведению функциональной МРТ являются опухоли головного мозга, в особенности, если последние располагаются вблизи функционально значимых областей коры мозга. Этот метод помогает также выявить очаги эпилепсии. В нейропсихологии его применяют для изучения нарушений памяти, внимания, речи и других изменений когнитивных функций.

При помощи данного вида МРТ можно выявить некоторые заболевания на ранних стадиях, например, определить участки ишемии (недостаточного поступление кислорода) и предотвратить тем самым инсульт. Также она позволяет выявить первые признаки болезней Паркинсона и Альцгеймера.

Направляют на данную процедуру чаще всего неврологи, нейрохирурги, психиатры, онкологи.

Где пройти функциональную МРТ?

Для прохождения функциональной МРТ недостаточно найти медицинский центр, оснащенный магнитно-резонансным томографом. Диагностический аппарат должен быть высокочувствительным, то есть иметь необходимые для данного обследования технические характеристики (мощность магнитного поля, постоянное и временное разрешение).

Для расшифровки полученных результатов специалист должен обладать знаниями как структурной, так и функциональной организации мозга.

Подготовка, противопоказания и методика проведения функциональной МРТ

Перед проведением диагностики необходимо снять с тела и одежды все металлические предметы. Если имеются какие-либо имплантаты или неснимаемые протезы, вопрос о возможности проведения процедуры решается специалистом-радиологом в индивидуальном порядке. Не рекомендуется проведение МРТ во время беременности.

Пациент помещается внутрь тоннеля томографа в положении лежа. Он должен точно выполнять все рекомендации лучевого диагноста. В отличие от обычной МРТ, когда от пациента требуется просто неподвижно лежать во время обследования, при функциональной МРТ его просят выполнять какие-либо задания. Передаются команды обычно через переговорное устройство.

Расшифровка результатов, как правило, проводится совместно специалистом-радиологом и нейрохирургом или неврологом.

Перспективы применения функциональной МРТ

На основании проведенных исследований ученые считают, что функциональную МРТ можно будет использовать в будущем даже для чтения мыслей и визуализации снов. Теоретически с ее помощью можно создать условия для общения с парализованными людьми. Эта методика имеет безграничные перспективы в медицине, психологии и многих других областях.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top