Медицина будущего: какие технологии позволят людям победить старость, болезни и смерть? Медицина будущего: чем и как нас будут лечить. А главное - кто Как будет развиваться медицина в будущем

Медицина будущего: какие технологии позволят людям победить старость, болезни и смерть? Медицина будущего: чем и как нас будут лечить. А главное - кто Как будет развиваться медицина в будущем

Процесс развития медицины с каждым годом ускоряется, и 2017 год полон технологий, открывающих новые перспективы лечения людей. «Футурист» составил подборку наиболее актуальных и значимых из них.

Робототехника и автоматизация постепенно преображают то, как врачи выполняют и хирургические операции, и терапевтическое лечение. Новые системы используют достижения программного обеспечения, миниатюризации и робототехники, позволяя проводить минимально инвазивные операции на самых деликатных частях анатомии человека. С каждым годом роботы выполняют все более сложные задачи с невозможной для людей точностью.

Новая хирургическая система da Vinci X

Успешно внедренные модели роботов-хирургов da Vinci продолжают совершенствовать. Новый представитель линейки предоставит хирургам и больницам доступ к передовым технологиям роботизированной хирургии по более низкой цене. Intuitive Surgical, компания-производитель робота, мировой лидер в области роботизированной минимально-инвазивной хирургии, объявила, что ее новая хирургическая система da Vinci X уже получила сертификат соответствия стандартам (CE Mark) в Европе.

«За последний 21 год Intuitive Surgical стала первопроходцем в области роботизированной хирургии, и мы продолжаем лидировать в разработке и выводе на рынок инновационных технологий, ориентированных на результат», - сказал доктор Гари Гутарт ( Gary Guthart), генеральный директор Intuitive Surgical. - «Наши хирурги, больницы и клиенты по всему миру рассказали, что операции с использованием роботизированных технологий имеют огромное значение для их пациентов, подчеркивая важность предоставления выбора с клинической, технологической и стоимостной точек зрения».

Роботизированные системы da Vinci разработаны, чтобы помочь хирургам осуществлять минимально инвазивную хирургию. Однако они не запрограммированы на самостоятельное проведение хирургических операций. Все процедуры выполняются хирургом, который контролирует систему, Da Vinci же обеспечивает 3D-изображение высокой четкости, роботизированную и компьютерную помощь.

Робот-хирург, способный провести операцию на мозг в 50 раз быстрее человека

Хирургия головного мозга требует крайней точности, один промах может повлечь гибель пациента. Даже у представителей одной из самых квалифицированных профессий в мире человеческий фактор может стать причиной смертельной ошибки. Исследователи Университета штата Юта надеются сократить влияние человеческого фактора: они полагают, что их операционный хирург способен выполнять сложные операции на мозге, сократив время, необходимое для разрезания черепа, с двух часов до двух с половиной минут. Таким образом, робот сократит время, необходимое для сложной процедуры, в 50 раз.

Аппарат двигается вокруг уязвимых участков черепа по данным, получаемым при сканировании компьютерной томографией и передаваемым в программное обеспечение робота. Компьютерная томография показывает программисту расположение нервов или вен, которых должен избегать робот.

Помимо очевидных преимуществ механизма машины, она также в долгосрочной перспективе может сэкономить деньги за счет более короткого времени операции. Дополнительным плюсом является уменьшение времени пребывания пациента под наркозом, что также делает процедуру более безопасной.

Терапевтические наноматериалы

Наноматериалы - это устройства, которые настолько малы, что их можно измерить только в молекулярном масштабе. Эти микроскопические машины бывают разных форм и могут быть изготовлены из различных материалов, от золота до синтетических полимеров, в зависимости от их предполагаемых функций. Фактически, более 50 лекарств на основе наночастиц уже одобрены Управлением по контролю за продуктами и лекарствами, такими как Abraxane от рака молочной железы и Doxil от рака яичников. В настоящее время эти аппараты используются для выборочной доставки токсичной химиотерапии непосредственно в раковые опухоли, что способствует снижению доз, необходимых для их уничтожения, и риска серьезных побочных эффектов для пациента. В будущем нанотерапевтические средства могут быть разработаны для уничтожения самих раковых клеток.

Ради этой цели исследователи разработали новую платформу неинвазивного метода визуализации действия наночастиц на рак у мышей (в реальном времени), что поможет исследователям улучшить их до тестирования на людях.

«Это важный шаг вперед в этой области», - заявил главный исследователь Александр Стег (Alexander Stegh). - «В нанотехнологической области отсутствует тщательная оптимизация, которую мы наблюдаем при разработке обычных лекарств, и мы хотели бы изменить это. Система, которую мы здесь разработали, действительно позволяет нам поддерживать эти усилия».

Команда Стега использовала новую платформу для тестирования терапевтических наноматериалов, которые они разрабатывали, - сферических нуклеиновых кислот (SNAs). Они могут убить неизлечимый в настоящее время тип рака мозга, нацеливаясь на определенный ген. Система визуализации помогла установить, что наночастицы оказывают наибольший эффект между 24 и 48 часами после введения, и, следовательно, определить наилучшее время для введения дополнительной химиотерапии.

Искусственный интеллект

Еще одна малозаметная технологическая новинка в медицине включает использование искусственного интеллекта (ИИ). IBM Watson, суперкомпьютер компании IBM, уже продемонстрировала острый диагностический взгляд, а машинное обучение и программы глубокого обучения были использованы для прогнозирования всего, начиная с предположительного момента смерти пациента до следующей крупной вспышки заболевания.

Можно ожидать, что применение ИИ в медицине будет только расти. Особенно в этом году, когда необходимость отбирать и ассимилировать огромное количество медицинских данных - на индивидуальной или крупномасштабной, общественной основе - станет критической. Между тем страх, что потенциально несовершенные программы машинного обучения вытеснят человеческие ресурсы, также станет более реальным.

Редактирование генов

Революционная технология редактирования генов CRISPR/Cas-9 стала уникальным прорывом в области биологии. Она предлагает преобразование ее из медленной, неточной науки в нечто, близкое к физическим наукам. Будущее технологии редактирования генов открыто самым невероятным догадкам, несмотря на легальные запреты во многих странах и этические вопросы, связанные с этим.

Более широкое использование технологии на людях уже неизбежно. Возможно, именно 2017 год, станет годом, когда это случится в первый раз. Наиболее вероятны широкие испытания редактирования генов в борьбе с раковыми заболеваниями, или использование CRISPR для искоренения патогенных человеческих ДНК-вирусов, таких как ВИЧ или герпес.

Но ожидаются также пассивные меры, такие как простое изучение прогресса болезни Альцгеймера и других нейродегенеративных заболеваний или даже немедицинских сельскохозяйственных и промышленных применений этой технологии. Осознание механизмов действия последовательностей ДНК позволит ученым решать проблемы во всех областях биологии, от лечения болезней человека, до понимания того, почему исчезают некоторые виды живых существ.

Контроль инсулин-продуцирующих клеток на смартфоне

Для людей с диабетом инъекции инсулина являются неотъемлемой частью жизни. Однако новое устройство, созданное китайскими исследователями и проверенное на мышах, может избавить их от необходимости постоянных уколов. Команда имплантировала клетки, продуцирующие инсулин, мышам с диабетом, а затем использовала приложение на смартфоне для «включения» этих клеток. Через два часа устройство, которое его создатели называют HydrogeLED, стабилизировало уровень сахара в крови у мышей. Гидрогелевая капсула размером с монету. Она вживляется под кожу животным и состоит из инсулин-продуцирующих клеток и светодиодных ламп. Клетки вырабатывают инсулин только тогда, когда включены светодиоды.

Уровень сахара в крови можно контролировать с помощью отдельного Bluetooth-глюкометра, который подает сигнал в приложение, когда он поднимается слишком высоко. Затем приложение включает светодиоды, вызывая выработку инсулина. Пользователь может вручную контролировать яркость светодиодов и продолжительность их работы, таким образом регулируя, сколько инсулина попадает в кровь.

Однако пока использование приложения на людях невозможно в связи с некоторыми проблемами. Мыши, на которых проверялась работы устройства, заключены в катушку электромагнитного поля, которая очень похожа на интеллектуальный домашний хаб - таким образом приложение может взаимодействовать с сервером. Светодиоды питаются от самого электромагнитного поля, а значит, вся система не сможет работать вне катушки. Кроме того, на данный момент уровень сахара в крови все еще проверяется с помощью иглы.

В будущих версиях HydrogeLED эти проблемы будут решены. Автор исследования Хайфэн Е планирует запустить 24-часовой мониторинг уровня сахара в крови встроенным глюкометром, который при необходимости сможет автоматически запускать светодиоды.


Медицина не стоит на месте. Новые открытия и технологии позволяют излечивать те болезни, которые совсем недавно считались неизлечимыми. Совершенно на новый уровень выходит также диагностика заболеваний. И сегодня мы расскажем про 5 самых необычных медицинских технологий современности, которые уже в самом скором будущем могут стать обычным делом.


Само словосочетание «британские ученые» давно стало носить юмористическую окраску. Ведь они часто исследует совершенно абсурдные и непонятные вещи, вызывающие у общественности удивление. Но, бывает, что ученые из Великобритании занимаются, действительно, важными вещами. К примеру, недавно медики из этой страны представили революционную медицинскую технологию.

Она позволяет определить генетические заболевания в автоматическом режиме по фотографии. Компьютер, основываясь на снимках человеческого лица, может указать, какие проблемы могут появиться у человека в будущем.



Ведь исследования показали, что примерно тридцать процентов изменений, происходящих с лицом человека, обусловлены его хроническими и генетическими болезнями. А медики из Оксфорда создали программное обеспечение, позволяющее обнаруживать потенциальные проблемы пациентов на основе мельчайших деталей их физиогномики.
Медики давно искали способ оперативно бороться с приступами удушья у пациентов. Ведь долгое время самым эффективным вариантом в таких случаях была трахеотомия – рассечение хирургическим путем трахеи, чтобы вставить туда трубку. Но ученые из Бостонской детской клиники (Boston Children"s Hospital) придумали новый .



Они разработали инъекции, обогащающие человеческую кровь кислородом на время до тридцати минут. Это нужно, в первую очередь, для медицинских потребностей, проведения операций и спасения людей в экстремальных условиях. Но использовать технологию можно также в спорте и развлечениях.



Во время укола в тело попадают жировые частицы, содержащие в себе молекулы кислорода. Последние высвобождаются при контакте жира с эритроцитами и насыщают кровь необходимым человеку ресурсом.
Медикам из разных стран помогают находить рак у пациентов специально обученные собаки. Оказывается, эти животные способны обнаруживать раковые клетки в организме человека и даже отличать один вид заболевания от другого.

Самым известным подобным псом является , который «работает» в одной из онкологических клиник Южной Кореи. Его владельцы даже решили клонировать своего питомца, чтобы затем продавать пса с уникальными данными в другие больницы по всему миру.



А в Израиле решили пойти другим путем. Они создали технологию «искусственный нос», позволяющую определять раковые клетки при помощи электроники. Пациенту достаточно выдохнуть в специальную трубку, и компьютер диагностирует у него один из нескольких видов рака, если, конечно, это опасное заболевание у человека имеется. Более того, этот технологический нос во много раз более точный, чем нос лабрадора Мэрина.



Цветочная пыльца – это удивительное вещество, которое, попадая в дыхательные пути человека, может затем быстро распространиться в разные части тела, в том числе, в пищеварительную систему и на слизистые оболочки. Этот ее эффект и решили использовать в медицинских целях ученые из Университета Техаса.

Группа американских исследователей создала технологию, позволяющую проводить вакцинацию человека без использования игл и уколов. Она научилась покрывать вакциной цветочную пыльцу, которая затем проникает в человеческий организм и несет полезный препарат в самые сокровенные его уголки, где он затем легко впитывается.



Интересно, что самой сложной частью этого научного проекта была попытка научиться избавлять цветочную пыльцу от всех аллергенов. С этого, собственно, и начались исследования. А, научившись деаллергизации пыльцы, ученые смогли легко нанести на очищенный материал и медицинские препараты.



Долгие десятилетия самым действенным способом борьбы с депрессией были специализированные лекарства. Они вызывали побочные эффекты и зависимость, что негативно влияло не только на эмоциональное, но и физическое здоровье человека. Но недавно был разработан кардинально противоположный способ борьбы с этим заболеванием, основанный не на химии, а на электромагнитном излучении.



Шлем со сложным названием NeuroStar Transcranial Magnetic Stimulation Therapy System воздействует на определенные зоны коры головного мозга человека при помощи электромагнитных импульсов, заставляя возбуждаться нейтроны, ответственные за получение удовольствия.



Клинические опыты показали, что 30-40 минут, проведенные ежедневно в шлеме NeuroStar Transcranial Magnetic Stimulation Therapy System, позволяют больным депрессией людям чувствовать себя намного лучше, а тридцати процентам подобное лечение со временем приносит полное выздоровление.

В середине июня 2019 года консалтинговая компания Accenture выпустила исследование Digital Health Tech Vision, посвящённое использованию технологий в здравоохранении. По мнению экспертов, больницы и другие медицинские учреждения должны готовить себя к использованию блокчейна , искусственного интеллекта , дополненной реальности и квантовых вычислений .

К середине 2019 года эти технологии, которые в Accenture объединяют аббревиатурой DARQ (с англ. distributed ledger technology, AI, augmented reality и quantum computing), находятся на ранней стадии развития в медицинском секторе, однако в дальнейшем они смогут трансформировать здравоохранение .

2018: Как изменится здравоохранение к 2030 году: 5 технотрендов

В отчете компании Aruba (входит в HPE), вышедшем в апреле 2018 года, утверждается, что в течение 10 лет, по мере того как организации здравоохранения будут менять подход к оказанию услуг пациентам, внедряя технологии Интернета вещей , процедура медицинского осмотра изменится таким образом, что пациенты будут больше взаимодействовать с датчиками, камерами и роботизированным оборудованием, а не с врачами и медсестрами.

Отчет «Создание больницы 2030 года» (`Building the Hospital of 2030`) содержит результаты опроса высшего руководства организаций здравоохранения и футурологов. Он демонстрирует высокую вероятность и необходимость создания интеллектуальных рабочих пространств в области здравоохранения, которые будут включать в себя мобильные устройства, облачные технологии и технологии Интернета вещей. Кроме того, в отчете описывается, как эти изменения отразятся на обслуживании пациентов и повышении уровня клинической медицины.

В исследовании высказываются пять основных предположений по поводу того, как изменится здравоохранение к 2030 году.

1. Самодиагностика. Специальные мобильные приложения, носимые устройства и инструменты позволят видеть результат диагностики, следить за состоянием своего здоровья и даже самостоятельно делать снимки. Таким образом, пациенты получат возможность проводить диагностику широкого спектра заболеваний в домашних условиях без посещения больниц или поликлиник.

2. Автоматизированная больница. В приемных отделениях будут использоваться технологии обработки изображений и датчики, определяющие частоту сердечных сокращений, температуру тела и частоту дыхания, когда пациент входит в учреждение, а также устройства, которые смогут измерить кровяное давление и сделать ЭКГ в течение 10 секунд. Благодаря этому можно будет автоматически определять очередность оказания медицинской помощи и даже в тот же момент ставить диагноз.

3. Увеличение свободного времени медицинских работников вдвое. Врачи и медсестры, которым сейчас приходится тратить до 70% времени на административные процессы, смогут быстро анализировать снимки и истории болезни на мобильных устройствах. Благодаря этому у них появится значительно больше времени, которое они смогут уделять уходу за пациентами.

4. Хранилища цифровых данных. Цифровые карты пациентов будут интегрированы в устройства, что позволит автоматически обновлять информацию о состоянии здоровья и плане лечения. Таким образом медицинский персонал, сможет оперативно получать более полные данные в реальном времени для принятия оптимальных решений.

5. Принятие искусственного интеллекта. Искусственный интеллект (ИИ) будет играть все более важную роль в диагностике и лечении, а поддержка новых технологий со стороны общества вырастет. Люди будут охотнее соглашаться на автоматизированное обследование, при условии, что услуги будут разрабатываться и внедряться с учетом интересов пациентов, им разъяснят преимущества, а согласие на процедуру будет предварительно запрошено.

Профессор Университетского колледжа Лондона д-р Хью Монтгомери (Hugh Montgomery) рассказывает о возможностях повышения уровня медицинского обслуживания с помощью искусственного интеллекта:


Маниш Джунеджа (Maneesh Juneja), футуролог, занимающийся прогнозами в области цифровой медицины, делится мнением о перспективах самостоятельного медицинского ухода:

«Предположим, через 10 лет у вас будет выявлен диабет или повышенное артериальное давление. После этого вы сможете контролировать прием лекарств, и вам не нужно будет так часто посещать медицинские учреждения для корректировки плана лечения. Система будет удаленно анализировать ваше состояние в реальном времени, определять отклонения от режима питания или курса лечения и отправлять вам цифровые уведомления на умные часы или очки дополненной реальности ».

Согласно отчету Aruba, такие возможности совсем не относятся к научной фантастике. Подобное развитие технологий сможет сыграть решающую роль в улучшении ухода за населением преклонного возраста (по данным ООН, к 2030 году количество людей в мире в возрасте от 60 лет вырастет на 56%) и существенно повысить потребность в более качественных медицинских услугах.


Создатели отчета отмечают, что организации здравоохранения уже делают первые шаги по внедрению цифровых технологий, осознавая потребность в модернизации. Согласно исследованию Aruba, около двух третей медучреждений (64%) начали подключать приборы для контроля за состоянием пациентов к своей сети, а 41% организаций - устройства диагностической визуализации и рентгеновские аппараты. Эти активности являются этапами реализации стратегии Интернета вещей, которая предполагает объединение в сеть миллионов медицинских, носимых и мобильных устройств, эффективно обменивающихся актуальной информацией и обеспечивающих более качественное медицинское обслуживание.

Однако этот подход по состоянию на 2018 год сопряжен с определенными рисками. 89% организаций здравоохранения, которые реализуют стратегию Интернета вещей, столкнулись с утечками данных. В связи с распространением огромного количества новых устройств в ближайшие 10 лет основной проблемой для организаций станет сохранение пристального внимания ко всем устройствам, подключенным к сети и обменивающимся медицинскими данными, для контроля за выполнением строгих правил безопасности.

Здоровье

Нет сомнений в том, что наше общество в настоящее время развивается гораздо быстрее , чем в прошлом. Это относится также к медицинским технологиям, которые сегодня достигли невероятно высокого уровня, но что же нас ждет впереди ?

Многие технологии уже успешно применяются, но некоторые из них еще ждут своего часа, несмотря на то, что уже есть доказательства их эффективности . В будущем мы сможем заживлять раны за считанные минуты, выращивать полноценные органы, кости и клетки, создавать оборудование, работающее на энергии человека, восстанавливать поврежденный мозг и многое другое.

Здесь собраны самые любопытные технологии, которые уже изобретены, но пока широко не используются.

1) Остановить кровотечение поможет гель

Обычно какие-то открытия в области медицины случаются в ходе долгих лет сложных дорогостоящих исследований . Однако порой ученые имеют дело со случайными открытиями, или группа молодых перспективных исследователей вдруг наталкивается на нечто интересное.


Например, благодаря молодым исследователям Джо Ландолина и Исааку Миллеру на свет появился Veti-Gel – кремообразное вещество, которое моментально запечатывает рану и стимулирует процесс заживления .

Этот гель, останавливающий кровотечение, создает синтетическую структуру, которая имитирует внеклеточный матрикс – ткань межклеточного пространства, которая скрепляет клетки. Предлагаем посмотреть видео , которое демонстрирует гель в действии.

Так мы будем останавливать кровь: технология будущего (видео):

В этом примере видно, как из разрезанного куска свиного мяса сочится кровь и как она моментально останавливается при использовании геля.

В других тестах Ландорино использовал гель для того, чтобы остановить кровотечение сонной артерии у крысы. Если этот продукт станет широко применяться в медицине, он позволит спасти миллионы жизней , особенно в зонах боевых действий.

2) Магнитная левитация помогает выращивать органы

Выращивание искусственной легочной ткани с помощью магнитной левитации – звучит, как фраза из фантастической книги, однако теперь это реальность. В 2010 году Глауко Соуза и его команда стали искать способ создания реалистичной человеческой ткани с помощью наномагнитов , которые позволяют ткани, выращенной в лаборатории, подниматься над питательным раствором.


В результате была получена самая реалистичная ткань органа из всех искусственных тканей. Обычно ткани, созданные в лаборатории, растут в чашках Петри, а если ткань приполнять, она начинает расти в трехмерной форме , что позволяет строить более сложные слои клеток.


Рост клеток "в 3D формате" является самой лучшей симуляцией роста в естественных условиях в теле человека. Это огромный шаг вперед в создании искусственных органов, которые затем можно имплантировать в тело пациента.

3) Искусственные клетки, имитирующие натуральные

Медицинские технологии сегодня идут в направлении поиска возможностей выращивать человеческие ткани за пределами организма, другими словами, ученые стремятся найти способ создавать реалистичные "запчасти", чтобы помочь всем нуждающимся.

Сеть волокон синтетического геля


Если какой-то орган отказывается работать, мы заменяем его на новый, таким образом, обновляя всю систему. Сегодня эта идея обращается к клеточному уровню: ученые разработали крем, который имитирует действие некоторых клеток .

Этот материал создается сгустками шириной всего 7,5 миллиардных частей метра. Клетки имеют свой собственный тип скелета , известный под названием цитоскелет , который образован из белков.

Цитоскелет клеток


Синтетический крем заменит этот цитоскелет в клетке, а если крем применить на рану, он способен заменить все клетки, которые были потеряны при травме . Жидкости будут проходить сквозь клетки, что позволит ране заживать, а искусственный скелет будет защищать от проникновения в организм бактерий.

4) Клетки мозга из мочи – новая технология в медицине

Как это ни странно, но ученые нашли способ получения человеческих клеток мозга из мочи . В Институте биомедицины и здоровья в городе Гуанчжоу , Китай, группа биологов использовала ненужные клетки мочи для создания из них с помощью лейковирусов клеток-предшественников , которые наш организм использует в качестве строительных блоков для клеток мозга.


Самым ценным в этом методе является то, что новые созданные нейроны не способны вызывать появление опухолей , по крайней мере, как показали эксперименты с мышами.

В прошлом для этой цели использовались стволовые клетки эмбрионов , однако одним из побочных эффектов таких клеток было то, что в них с большой вероятностью появлялись опухоли после трансплантации. Через несколько недель клетки, полученные из мочи, уже начинали формироваться в нейроны совершенно без каких-то нежелательных мутаций.


Очевидное преимущество такого метода в том, что сырье для новых клеток является очень доступным . Также ученые имеют возможность создавать клетки для пациента из его же собственной мочи, что повышает шансы того, что клетки приживутся.

5) Медицинская одежда будущего – электрическое нижнее белье

Невероятно, но факт: электрическое нижнее белье поможет спасти сотни жизней . Когда пациент лежит в больнице дни, недели, месяцы без возможности вставать с постели, у него могут появиться пролежни - открытые раны, которые образуются из-за отсутствия циркуляции и сжимания тканей.


Оказывается, пролежни могут приводить к летальному исходу. Примерно 60 тысяч людей умирает из-за пролежней и сопутствующих инфекций ежегодно только в США.

Канадский исследователь Шон Дукелов разработал электрическое нижнее белье, которое получило название Smart-E-Pants . С помощью такой одежды тело пациента получает маленький электрический разряд каждые 10 минут.


Эффект от таких ударов током такой же, как если бы пациент двигался естественным образом. Ток активирует мышцы, повышает циркуляцию крови в этой области, эффективно предотвращает появление пролежней , позволяя спасти пациенту жизнь.

6) Эффективная вакцина из цветочной пыльцы

Цветочная пыльца – один из самых распространенных аллергенов в мире, что связано со строением пыльцы. Внешняя оболочка пыльцы невероятно прочная, что позволяет ей оставаться целой , даже проходя через пищеварительную систему человека.


Именно таким свойством должна обладать любая вакцина: многие вакцины теряют эффективность, так как они не могут выдержать кислоты желудка , если применять их орально. Вакцины разрушаются и становятся бесполезными.


Исследователи из Технического Университета Техаса ищут способы использования пыльцы для создания вакцин, спасающих жизни, для солдат, направленных за рубеж. Главный исследователь Харвиндер Гилл имеет цель проникнуть в пыльцевое зерно и удалить аллергены, а вместо них поместить в пустую оболочку вакцину . Ученые уверены, что эта возможность изменит способы использования вакцин и медикаментов.

7) Искусственные кости с помощью 3D принтера

Все мы прекрасно помним, что если сломать руку или ногу, мы должны в течение долгих недель носить гипс , чтобы кости срослись. Похоже, что подобные технологии уже в прошлом. С помощью 3D принтера ученые из Вашингтонского Университета разработали гибридный материал, который имеет те же свойства (прочность и гибкость) , что и настоящие кости.

Такая "модель" помещается на место травмы, а настоящая кость начинает обрастать вокруг нее. После того, как процесс завершен, модель размельчается.


3D принтер, который используется – ProMetal , он доступен практически любому. Проблемой является сам материал для костной структуры . Ученые используют формулу, которая включает цинк, силикон и фосфат кальция . Процесс удачно был тестирован на кроликах. Когда костный материал комбинировали со стволовыми клетками , естественный рост кости был намного быстрее, чем обычно.


Вероятно, в будущем с помощью 3D принтеров можно будет выращивать не только кости, но и другие органы. Единственное, что нужно изобрести подходящие материалы .

8) Восстановление поврежденного мозга

Мозг – очень нежный орган и даже небольшая травма может вызвать серьезные длительные последствия , если повреждены определенные важные области. Для людей, переживших подобные травмы, длительная реабилитация – единственная надежда вернутся к полноценной жизни. В качестве альтернативы изобретено специальное устройство , которое стимулирует язык.


Ваш язык связан с нервной системой с помощью тысяч пучков нервов , некоторые из которых ведут прямо в мозг. Основываясь на этом факте, был изобретен переносной стимулятор нервов под названием PoNS , который стимулирует особые нервные области на языке, чтобы заставить мозг восстанавливать клетки, которые были повреждены.


Удивительно, но это работает. Пациенты, которые получали такое лечение, испытывали улучшение уже через неделю . Помимо тупых травм, PoNS может также использоваться для восстановления мозга от чего угодно, включая алкоголизм, болезнь Паркинсона, инсульт и рассеянный склероз .

9) Человек, как генератор энергии: кардиостимуляторы будущего

Кардиостимуляторы сегодня используются примерно 700 тысячами людей для регулирования сердечного ритма. Но через какое-то время, обычно около 7 лет, его заряд истощается и он разряжается, требуя сложнейшей дорогой операции по замене .


Ученые из Университета Мичигана , похоже, решили проблему, разработав способ использовать энергию, которую дает движение сердца. Эту энергию можно использовать для питания кардиостимулятора.

После весьма успешных испытаний кардиостимулятор нового поколения готов к реальному использованию на живом человеческом сердце. Это устройство создано из материалов, которые создают электричество, меняя форму.


Если попытка окажется удачной, эту технологию можно будет применять не только для кардиостимуляторов. Можно будет создавать оборудование и устройства, работающие на человеческой энергии . Например, уже изобретен прибор, который вырабатывает электричество, используя вибрации внутреннего уха, и применяется для питания небольшого радиоприемника.

Технологии замены суставов и костей прошли долгий путь за последние десятилетия, части на пластиковой и керамической основе взяли верх над металлическими частями, а новейшее поколение искусственных костей и суставов заходит еще дальше: их будут делать из биоматериалов, чтобы они практически слились с телом.

Это стало возможным, конечно же, благодаря 3D-печати (к этой теме мы будем возвращаться неоднократно). Хирурги главного госпиталя Саутгемптона в Великобритании изобрели технику, с помощью которой имплант бедра пожилого пациента удерживается на месте с помощью «клея», изготовленного из собственных стволовых клеток пациента. Кроме того, профессор Университета Торонто Боб Пиллиар вывел процесс на новый уровень, создав импланты нового поколения, которые на самом деле имитируют кость человека.

Используя процесс, который связывает компонент кости на замену (с применением ультрафиолетового света) в невероятно сложные структуры с чрезвычайной точностью, Пиллиар и его команда создает крошечную сеть каналов и траншеек, по которым перевозятся питательные вещества в самом импланте.

Выращенные костные клетки пациента затем распределяются по этой сети, замыкая кость с имплантом. Со временем компонент искусственной кости растворяется, а выросшие естественным образом клетки и ткани сохраняют форму импланта.

Крошечный кардиостимулятор


С момента имплантации первого кардиостимулятора в 1958 году, эта технология, конечно, значительно улучшилась. Впрочем, после гигантских скачков в развитии в 1970-х, в середине 80-х все как-то застопорилось. Компания Medtronic, которая создала первый кардиостимулятор, работающий на батарейке, выходит на рынок с устройством, которое может произвести такую же революцию в области кардиостимуляторов, как и ее первое устройство. Оно размером с витаминку и не требует хирургического вмешательства.

Эта новая модель вводится через катетер в паху (!), крепится к сердцу маленькими зубцами и поставляет необходимые регулярные электрические импульсы. В то время как обычные кардиостимуляторы, как правило, требуют сложного хирургического вмешательства, создания «кармашка» для устройства рядом с сердцем, крошечная версия существенно упрощает эту процедуру и снижает частоту осложнений на 50%: 96% пациентов не выявляли никаких признаков осложнений.

И хоть Medtronic вполне может быть первым на этом рынке (имея полученное одобрение FDA), другие крупные производители кардиостимуляторов разрабатывают конкурентные устройства и не собираются оставаться за пределами рынка, годовой объем которого составляет 3,6 миллиарда долларов. Medtronic начала разработку крошечных спасителей в 2009 году.

Глазной имплант от Google


Вездесущий провайдер поисковой системы и мировой гегемон Google, похоже, планирует интегрировать технологии в каждый аспект нашей жизни. Впрочем, стоит признать, что вместе с кучей хлама Google выдает на-гора и стоящие идеи. Одно из последних предложений Google может как изменить мир, так и превратить его в кошмар.

Проект, который известен как Google Contact Lens, представляет собой контактную линзу: имплантируясь в глаз, она заменяет естественный хрусталик глаза (который разрушается в этом процессе) и приспосабливается, исправляя плохое зрение. Линза крепится к глазу с помощью того же материала, который используется при производстве мягких контактных линз, и имеет множество практических медицинских применений - вроде считывания кровяного давления пациентов с глаукомой, уровней глюкозы у пациентов с диабетом или беспроводного обновления с учетом ухудшений зрения пациента.

В теории, искусственный глаз Google может полностью восстановить зрение. Конечно, это еще не камера, которая имплантируется прямо вам в глаза, но поговаривают, что к этому все идет. Кроме того, непонятно, когда линза появится на рынке. Но патент был получен, а клинические испытания подтвердили возможность процедуры.


За последние десятилетия достижения в области создания искусственной кожи явили нам существенный прогресс, но два недавних прорыва из совершенно разных областей могут открыть новые направления для исследований. Ученый Роберт Лангер из Массачусетского технологического института разработал «вторую кожу», которую назвал XPL («сшитый полимерный слой»). Невероятно тонкий материал имитирует упругую молодую кожу - этот эффект проявляется мгновенно при создании, но теряет силу примерно через день.

А вот профессор химии Чао Вонг из Калифорнийского университета в Риверсайде работает над еще более футуристическим полимерным материалом: который может самовосстанавливаться от повреждений при комнатной температуре и пронизан крошечными металлическими частицами, которые могут проводить электричество, для лучших измерений. Профессор уверяет, что не пытается создать кожу для супергеров, но признает, что является большим фанатом Росомахи и пытается привнести научную фантастику в настоящий мир.

Что примечательно, некоторые самовосстанавливающиеся материалы уже появились на рынке - например, самовосстанавливающееся покрытие телефона LG Flex, которое Вонг приводит в качестве примера возможного применения таких технологий в будущем. Короче говоря, этот чувак действительно пытается создать супергероев.

Импланты мозга, восстанавливающие двигательные способности


Двадцатичетырехлетний Ян Буркхарт пережил ужасную аварию в возрасте девятнадцати лет, которая парализовала его от груди до пальцев ног. В течение последних двух лет он работал с докторами, которые настраивали и экспериментировали с устройством, имплантированным в его мозг - микрочипом, который считывает электрические импульсы мозга и переводит их в движение. Хоть устройство и далеко от совершенства - его можно использовать только в лаборатории, когда имплант подключен к компьютеру с помощью рукава на руке - оно позволило пациенту свинтить крышку с бутылки и даже поиграть в видеоигру.

Ян признает, что может и не получить выгоду от этих технологий. Он делает это больше чтобы доказать возможность концепции и показать, что его конечности, разъединенные с мозгом, можно заново к нему подключить с помощью посторонних средств.

Впрочем, вполне вероятно, что его помощь хирургии головного мозга и эксперименты, которые проводят по три раза в неделю, окажут огромную поддержку в продвижении этой технологии для будущих поколений. Хотя подобные процедуры использовались для частичного восстановления движений обезьян, это первый пример успешного преодоления нервного разъединения, которое вызывает паралич у человека.

Биоабсорбируемые трансплантаты


Стенты - сетчатые полимерные трубки, которые вставляются хирургическим путем в артерии, препятствуя их блокированию - сущее зло, которое приводит к осложнениям у пациента и демонстрируют умеренную эффективность. Потенциал осложнений, особенно у молодых пациентов, делает результаты недавнего исследования с участием биоабсорбируемых сосудистых трансплантатов весьма перспективными.

Процедура называется эндогенное восстановление тканей. Давайте простыми словами: в случае с молодыми пациентами, которые родились без некоторых необходимых соединений в сердце, врачи смогли создать эти соединения, используя продвинутый материал, который выступает в качестве «лесов», позволяя телу копировать его структуру с помощью органических материалов, а сам имплант впоследствии растворяется. Исследование было ограниченным, с участием всего пятерых молодых пациентов. Но все пятеро выздоровели без каких-либо осложнений.

Хотя эта концепция не нова, новый материал (состоящий из «супрамолекулярных биоабсорбируемых полимеров, изготовленных с использованием проприетарной технологии электропрядения») представляет собой важный шаг вперед. Стенты предыдущего поколения состояли из других полимеров и даже металлических сплавов и выдавали смешанные результаты, что привело к медленному принятию этого метода лечения во всем мире.

Хрящ из биостекла


Еще одна 3D-печатная полимерная конструкция может произвести революцию в методах лечения весьма изнурительных заболеваний. Группа ученых из Имперского колледжа Лондона и Университета Милано-Бикокка создали материал, который назвали «биостеклом»: комбинацию кремний-полимера, имеющую прочные и гибкие свойства хряща.

Биостеклянные импланты напоминают стенты, о которых мы говорили выше, но делаются из совершенно другого материала для совершенно другого применения. Одним из предложенных использований таких имплантов является выстраивание лесов для поощрения естественного выращивания хряща. Также они обладают саморегенерацией и могут восстанавливаться, если связи будут разорваны.

Несмотря на то, что первым испытанием метода будет замена межпозвоночного диска, другая - постоянная - версия импланта находится в стадии разработки для лечения травм колена и других травм в районах, где хрящ уже не отрастить. делает импланты более дешевыми и доступными в производстве и еще более функциональными, чем другие импланты этого типа, которые доступны нам в настоящее время и, как правило, выращиваются в лаборатории.

Самовосстанавливающиеся полимерные мышцы


Чтобы не отставать от коллег, стэнфордский химик Ченг-Хи Ли в поте лица работает над материалом, который может быть строительным блоком для фактической искусственной мышцы, которая может превзойти в качествах наши хилые мускулы. Его соединение - подозрительно органическое соединение кремния, азота, кислорода и углерода - способно растягиваться до 40-кратной своей длины, а после возвращаться в нормальное положение.

Также оно может восстанавливаться от проколов за 72 часа и заново закрепляться после разрывов, вызванных железной «солью» в компоненте. Правда, для этого части мышцы нужно поместить рядом. Куски пока не ползут друг к другу. Пока.

На текущий момент единственным слабым местом этого прототипа является его ограниченной электропроводность: при воздействии электрического поля вещество увеличивается всего на 2%, в то время как настоящие мышцы - на 40%. Это должно быть преодолено в кратчайшие сроки - и тогда Ли, ученые с биостеклянными хрящами и доктор Росомаха смогут собраться вместе и обсудить, что делать дальше.


Этот метод, который изобрел Дорис Тейлор, директор регенеративной медицины в Техасском институте сердца, не сильно отличается от упомянутых выше 3D-печатных биополимеров и прочего. Метод, который доктор Тейлор уже продемонстрировал на животных - и готов продемонстрировать на людях - совершенно фантастический.

Если коротко, сердце животного - свиньи, например - замачивается в химической ванне, которая разрушает и высасывает все клетки, кроме белка. Остается пустой «призрак сердца», который затем можно наполнить собственными стволовыми клетками пациента.

Как только необходимый биологический материал оказывается на месте, сердце подключается к устройству, которое заменяет искусственную систему кровообращения и легкие («биореактор»), пока не станет функционировать как орган и его можно будет пересадить пациенту. Этот метод Тейлор успешно продемонстрировал на крысах и свиньях.

Этот же метод имел успех и с менее сложными органами вроде мочевого пузыря и трахеи. Впрочем, процесс далек от совершенства, но когда его достигнет, очереди пациентов, ожидающих сердца для пересадки, могут прекратиться полностью.

Инъекция мозговой сети


Наконец у нас есть передовая технология, способная быстро, просто и совершенно опутать мозг сетью с помощью одной инъекции. Исследователи из Гарвардского университета разработали электропроводящую полимерную сеть, которая буквально впрыскивается в мозг, где проникает в его закоулки и сливается с веществом мозга.

Пока что сеть, состоящая из 16 электрических элементов, была пересажена в мозг двух мышей на пять недель без иммунного отторжения. Исследователи предсказывают, что крупномасштабное устройство такого плана, состоящее из сотен подобных элементов, может активно контролировать мозг до каждого отдельного нейрона в ближайшем будущем и пригодится при лечении неврологических расстройств вроде болезни Паркинсона и инсульта.

В конце концов, это исследование может привести ученых к более глубокому пониманию высших когнитивных функций, эмоций и других функций мозга, которые в настоящее время остаются непонятными.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top