Принцип работы нейронов в головном мозге. Строение и функции нейронов головного мозга

Принцип работы нейронов в головном мозге. Строение и функции нейронов головного мозга

Нервная система представляется наиболее сложной частью человеческого организма. В ее состав включаются около 85 миллиардов нервных и глиальных клеток. На сегодняшний день ученым удалось исследовать всего лишь 5 % нейронов. Другие 95% до сих пор остаются загадкой, поэтому проводятся многочисленные исследования данных компонентов мозга человека.

Рассмотрим, как устроен мозг человека, а именно его клеточную структуру.

Строение нейрона составляют 3 основные составляющие части:

1. Клеточное тело

Данная часть нервной клетки является ключевой, в состав которой входит цитоплазма и ядра, в совокупности создающие протоплазму, на поверхности которого образуется мембранная граница, состоящая из двух слое липидов. На мембранной поверхности находятся белки, представляющие форму глобул.

Нервные клетки коры состоят из тел, содержащих в себе ядро, а также ряд органелл, включая интенсивно и эффективно развивающуюся площадь рассеивания шероховатой формы, которая обладает активными рибосомами.

2. Дендриты и аксон

Аксон представляется продолжительным отростком, который эффективно приспосабливается к возбуждающим процессам от тела человека.

Дендриты имеют совсем иную анатомическую структуру. Их главное отличие от аксона то, что они имеют значительно меньшую длину, а также характеризуются наличием аномально развитых отростков, которые выполняют функции основного участка. В этом участке начинают возникать тормозящие синапсы, благодаря чему существует способность непосредственно влиять на сам нейрон.

Значительная часть нейронов в больше степени состоит из дендритов, при этом имеется всего один аксон. Одна нервная клетка имеет множество связей с другими клетками. В некоторых случаях количество данных связей превышает 25000.

Синапс – это место, где формируется контактный процесс между двумя клетками. Основной функцией является передача импульсов между различными клетками, при этом частота сигнала может изменяться в зависимости от скорости и типов передачи этого сигнала.

Как правило, чтобы начался возбуждающий процесс нервной клетки, в роли раздражителей могут выступить несколько возбуждающих синапсов.

Что собой представляет тройной мозг человека

Еще в 1962 году ученый-нейробиолог Пол Маклин выделил три мозга человека, а именно:

  1. Рептильный

Этот рептильный тип мозга человека существует более чем 100 млн. лет. Он оказывает значительное влияние на поведенческие качества человека. Его главной функцией является управление базовым поведением, которое включает в себя такие функции как:

  • Размножение на основе человеческих инстинктов
  • Агрессия
  • Желание все контролировать
  • Следовать определенным шаблонам
  • Имитировать, обманывать
  • Бороться за влияние над другими

Также рептильный головной мозг человека характеризуется такими особенностями как хладнокровие по отношению к другим, отсутствием сопереживания, полное безразличие к последствиям своих действий, в отношении к другим. Также данный тип не способен распознавать воображаемую угрозу с реальной опасностью. Вследствие этого, в некоторых ситуациях, данный мозг полностью подчиняет разум и тело человека.

  1. Эмоциональный (лимбическая система)

Представляется мозгом млекопитающего, возраст которого составляет около 50 млн. лет.

Отвечает за такие функциональные особенности особи как:

  • Выживание, самосохранение и самозащита
  • Управляет социальным поведением, включая материнскую заботу и воспитание
  • Учавствует в регулировании функций органов, обоняния, инстинктивного поведения, памяти, состояния сна и бодрствования и ряда других

Данный мозг практически полностью идентичен мозгу животных.

  1. Визуальный

Является мозгом, выполняющим функции нашего мышления. Другими словами это рациональный разум. Является наиболее молодой структурой, возраст которой не превышает 3 млн. лет.

Представляется тем, что мы именуем рассудком, который включает в себя такие способности как;

  • Размышлять
  • Проводить умозаключения
  • Способность анализировать

Выделяется наличием пространственного мышления, где возникают свойственные визуальные изображения.

Классификация нейронов

На сегодняшний день выделяется ряд классификация нейронных клеток. Одна из распространенных классификаций нейронов выделяется по числу отростков и месту их локализации, а именно:

  1. Мультиполярные. Данные клетки характеризуются большим скоплением в ЦНС. Представляются с одним аксоном и несколькими дендритами.
  2. Биполярные. Характеризуются одним аксоном и одним дендритом и располагаются в сетчатке глаза, обонятельной ткани, а также в слуховом и вестибулярном центре.

Также в зависимости выполняемых функций, нейроны подразделяются на 3 большие группы:

1. Афферентные

Отвечают за процесс передачи сигналов от рецепторов в отдел ЦНС. Различаются как:

  • Первичные. Первичные располагаются в спинальных ядрах, которые связываются с рецепторами.
  • Вторичные. Находятся в зрительных буграх и выполняют функции передачи сигналов в вышележащие отделы. Данный тип клеток не вступает в связь с рецепторами, а принимают сигналы от клеток-нейроцитов.

2. Эфферентные или двигательные

Этот тип формирует передачу импульса к остальным центрам и органам человеческого организма. Например, нейроны двигательной зоны больших полушарий – пирамидные, которые передают сигнал моторным нейронам спинномозгового отдела. Ключевая особенность моторных эфферентных нейронов – это наличие аксон значительной протяженности, обладающий высокой скоростью передачи сигнала возбуждения.

Эфферентные нервные клетки разных отделов мозговой коры связывают между собой эти отделы. Эти нейронные связи головного мозга обеспечивают отношения внутри полушарий и между ними, следовательно, которые отвечают за функционирование мозга в процессе обучения, распознавания объектов, утомляемости и т. п.

3. Вставочные или ассоциативные

Данный тип осуществляет взаимодействие между нейронами, а также обрабатывает данные, которые были переданы от чувствительных клеток и затем передают ее другим вставочным или моторным нервным клеткам. Эти клетки представляются меньшим размером, в сравнении с афферентными и эфферентными клетками. Аксоны представлены небольшой протяженностью, однако сеть дендритов довольно обширна.

Специалисты сделали вывод, что непосредственными нервными клетками, которые локализованы в головном мозге, являются ассоциативные нейроны мозга, а остальные регулируют деятельность мозга вне его самого.

Восстанавливаются ли нервные клетки

Современная наука уделяет достаточно внимания процессам гибели и восстановления нервных клеток. Весь организм человека имеет возможность восстанавливаться, но имеют ли такую возможность нервные клетки мозга?

Еще в процессе зачатия организм настраивается на отмирание нервных клеток.

Ряд ученых утверждает, что количество отираемых клеток составляет около 1% в год. Исходя из этого утверждения, получается, что головной мозг уже износился бы вплоть до потери способностей выполнять элементарные вещи. Однако такого процесса не происходит, и мозг продолжает функционировать до самой своей смерти.

Каждая ткань организма самостоятельно восстанавливает себя путем деления «живых» клеток. Однако после ряда исследований нервной клетки люди установили, что клетка не делится. Утверждается, что новые клетки головного мозга образуются вследствие нейрогенеза, который запускается еще во внутриутробном периоде и продолжается на протяжении всей жизни.

Нейрогенез – это синтез новые нейронов с предшественников – стволовых клеток, которые впоследствии дифференцируются и формируются в зрелые нейроны.

Такой процесс был впервые описан в 1960 году, однако в то время данный процесс ничем подкреплялся.

Дальнейшие исследования подтвердили, что нейрогенез может происходить в определенных мозговых областях. Одной из таких областей выступает пространство вокруг мозговых желудочков. Ко второму участку можно отнести гиппокамп, который располагается непосредственно возле желудочков. Гиппокамп, выполняет функции нашей памяти, мышления и эмоций.

Вследствие этого способности к запоминанию и размышлению формируются в процессе жизнедеятельность под влиянием различных факторов. Как можно отметить из вышесказанного, наш головного мозг, определение структур которого, хоть и было выполнено всего на 5%, все же выделяется ряд фактов, которые подтверждают способность нервных клеток восстанавливаться.

Заключение

Не стоит забывать, что для полноценного функционирования нервных клеток следует знать, как улучшить нейронные связи головного мозга. Многие специалисты отмечают, что главный залог здоровых нейронов – это здоровое питание и образ жизни и только затем может использоваться дополнительная фармакологическая поддержка.

Организуйте свой сон, откажитесь от алкоголя, курения и в конечном итоге ваши нервные клетки скажут вам спасибо.

Человеческий организм представляет собой довольно сложную и сбалансированную систему, функционирующую в соответствии с четкими правилами. Причем внешне кажется, что все довольно просто, но на самом деле наш организм - это удивительное взаимодействие каждой клеточки и органа. Дирижирует всем этим "оркестром" нервная система, состоящая из нейронов. Сегодня мы расскажем, что такое нейроны и насколько важную роль они играют в теле человека. Ведь именно они отвечают за наше психическое и физическое здоровье.

Каждый школьник знает, что руководит нами мозг и нервная система. Эти два блока нашего организма представлены клетками, каждая из которых называется нервный нейрон. Данные клетки отвечают за принятие и передачу импульсов от нейрона к нейрону и другим клетками человеческих органов.

Чтобы лучше понять, что такое нейроны, их можно представить в виде самого важного элемента нервной системы, который выполняет не только проводящую роль, но и функциональную. Удивительно, но до сих пор нейрофизиологи продолжают изучать нейроны и их работу по передаче информации. Конечно, они добились больших успехов в своих научных изысканиях и сумели раскрыть множество тайн нашего организма, но до сих пор не могут раз и навсегда ответить на вопрос, что такое нейроны.

Нервные клетки: особенности

Нейроны являются клетками и во многом похожи на других своих "собратьев", из которых состоит наше тело. Но они имеют ряд особенностей. Благодаря своей структуре такие клетки в организме человека, соединяясь, создают нервный центр.

Нейрон имеет ядро и окружен защитной оболочкой. Это роднит его со всеми остальными клетками, но на этом сходство и заканчивается. Остальные характеристики нервной клетки делают ее действительно уникальной:

  • Нейроны не делятся

Нейроны мозга (головного и спинного) не делятся. Это удивительно, но они останавливаются в развитии практически сразу же после своего возникновения. Ученые считают, что некая клетка-предшественница заканчивает деление еще до полного развития нейрона. В дальнейшем он наращивает только связи, но не свое количество в организме. С этим фактом связывают множество болезней мозга и центральной нервной системы. С возрастом часть нейронов отмирает, а оставшиеся клетки, в связи с малой активностью самого человека, не могут наращивать связи и заменить своих "собратьев". Все это приводит к разбалансировке организма и в некоторых случаях - к смертельному исходу.

  • Нервные клетки передают информацию

Нейроны могут передавать и получать информацию с помощью отростков - дендритов и аксонов. Они способны воспринимать определенные данные с помощью химических реакций и преобразовывать ее в электрический импульс, который, в свою очередь, по синапсам (связям) переходит до нужных клеток организма.

Уникальность нервных клеток учеными доказана, но на самом деле они сейчас знают о нейронах всего лишь 20% из того, что те на самом деле скрывают. Потенциал нейронов еще не раскрыт, в научном мире бытует мнение о том, что раскрытие одной тайны функционирования нервных клеток становится началом другой тайны. И этот процесс в настоящий момент представляется бесконечным.

Сколько нейронов в организме?

Эта информация доподлинно неизвестна, но нейрофизиологи предполагают, что нервных клеток в теле человека более ста миллиардов. При этом одна клетка имеет возможность образовывать до десяти тысяч синапсов, позволяющих быстро и эффективно связываться с другими клетками и нейронами.

Строение нейронов

Каждая нервная клетка состоит из трех частей:

  • тело нейрона (сома);
  • дендриты;
  • аксоны.

До сих пор неизвестно, какие из отростков развиваются в теле клетки первыми, но распределение обязанностей между ними вполне очевидно. Отросток нейрона аксон обычно формируется в единственном экземпляре, а вот дендритов может быть очень много. Их количество иногда доходит до нескольких сотен, чем больше дендритов у нервной клетки, тем с большим количеством клеток она может быть связана. К тому же, разветвленная сеть отростков позволяет передавать массу информации в кратчайшие сроки.

Ученые считают, что до формирования отростков нейрон расселяется по телу, и с момента их появления находится уже на одном месте без изменения.

Передача информации нервными клетками

Чтобы понять, насколько важны нейроны, необходимо понять, каким образом они выполняют свою функцию по передаче информации. Импульсы нейронов способны передвигаться в химическом и электрическом виде. Отросток нейрона дендрит получает информацию в качестве раздражителя и передает ее в тело нейрона, аксон передает ее в качестве электронного импульса к другим клеткам. Дендриты другого нейрона воспринимают электронный импульс сразу же или с помощью нейромедиаторов (химических передатчиков). Нейромедиаторы захватываются нейронами и в дальнейшем используются как свои собственные.

Виды нейронов по количеству отростков

Ученые, наблюдая за работой нервных клеток, разработали несколько видов их классификации. Одна из них делит нейроны по количеству отростков:

  • униполярные;
  • псевдоуниполярные;
  • биполярные;
  • мультиполярные;
  • безаксонные.

Классическим считается нейрон мультиполярный, он имеет один короткий аксон и сеть дендритов. Самыми малоизученными являются безаксонные нервные клетки, ученые знают только их местоположение - спинной мозг.

Рефлекторная дуга: определение и краткая характеристика

В нейрофизике существует такой термин, как "нейроны рефлекторной дуги". Без него довольно сложно получить полное представление о работе и значении нервных клеток. Раздражители, влияющие на нервную систему, называются рефлексами. Это основная деятельность нашей ЦНС, осуществляется она с помощью рефлекторной дуги. Ее можно представить своеобразной дорогой, по которой проходит импульс от нейрона до осуществления действия (рефлекса).

Этот путь можно разделить на несколько этапов:

  • восприятие раздражения дендритами;
  • передача импульса в тело клетки;
  • трансформация информации в электрический импульс;
  • передача импульса в орган;
  • изменение деятельности органа (физическая реакция на раздражитель).

Рефлекторные дуги могут быть разными и состоять из нескольких нейронов. К примеру, простая рефлекторная дуга образуется из двух нервных клеток. Одна из них получает информацию, а другая заставляет органы человека совершать определенные действия. Обычно такие действия называют безусловным рефлексом. Он возникает, когда человека ударяют, например, по коленной чашечке, и в случае прикосновения к горячей поверхности.

В основном, простая рефлекторная дуга проводит импульсы через отростки спинного мозга, сложносоставная рефлекторная дуга проводит импульс непосредственно в головной мозг, который, в свою очередь, обрабатывает ее и может откладывать на хранение. В дальнейшем при получении схожего импульса мозг отправляет нужную команду к органам для совершения определенной совокупности действий.

Классификация нейронов по функционалу

Классифицировать нейроны можно по их непосредственному назначению, ведь каждая группа нервных клеток предназначена для определенных действий. Виды нейронов представлены следующим образом:

  1. Чувствительные

Данные нервные клетки предназначены для восприятия раздражения и трансформации его в импульс, перенаправляющийся в мозг.

Воспринимают информацию и передают импульс к мышцам, приводящим в движение части тела и органы человека.

3. Вставочные

Данные нейроны осуществляют сложную работу, они находятся в центре цепочки между чувствительными и двигательными нервными клетками. Подобные нейроны принимают информацию, проводят предварительную обработку и передают импульс-команду.

4. Секреторные

Секреторные нервные клетки синтезируют нейрогормоны и имеют особенное строение с большим количеством мембранных мешочков.

Двигательные нейроны: характеристика

Эфферентные нейроны (двигательные) имеют строение, идентичное другим нервным клеткам. Их сеть дендритов является наиболее разветвленной, а аксоны протягиваются к мышечным волокнам. Они заставляют мышцу сокращаться и распрямляться. Самым длинным в теле человека как раз является аксон двигательного нейрона, идущий до большого пальца ноги от поясничного отдела. В среднем его длина составляет около одного метра.

Практически все эфферентные нейроны располагаются в спинном мозге, ведь именно он отвечает за большинство наших бессознательных движений. Это касается не только безусловных рефлексов (к примеру, моргания), но и любых действий, о которых мы не задумываемся. Когда мы всматриваемся в какой-то предмет, то импульсы посылает к глазному нерву головной мозг. А вот передвижение глазного яблока влево и вправо осуществляется посредством команд спинного мозга, это бессознательные движения. Поэтому с течением возраста, когда увеличивается совокупность бессознательных привычных действий, важность двигательных нейронов представляется в новом свете.

Виды двигательных нейронов

В свою очередь, эфферентные клетки имеют определенную классификацию. Они делятся на два следующих вида:

  • а-мотонейроны;
  • у-мотонейроны.

Первый вид нейронов имеет более плотную структуру волокна и присоединяется к различным мышечным волокнам. Один такой нейрон может задействовать различное количество мышц.

У-мотонейроны немного слабее своих "собратьев", они не могут задействовать несколько мышечных волокон одновременно и отвечают за натяжение мышцы. Можно сказать, что оба вида нейронов являются контролирующим органом двигательной активности.

К каким мышцам присоединяются двигательные нейроны?

Аксоны нейронов связаны с несколькими видами мышц (они являются рабочими), которые классифицируются как:

  • анимальные;
  • вегетативные.

Первая группа мышц представлена скелетными, а вторая относится к категории гладких мышц. Разными являются и способы прикрепления к мышечному волокну. Скелетные мышцы в месте соприкосновения с нейронами образуют своеобразные бляшки. Вегетативные нейроны связываются с гладкими мышцами посредством небольших вздутий или пузырьков.

Заключение

Невозможно представить, как функционировал бы наш организм в отсутствие нервных клеток. Они ежесекундно выполняют невероятно сложную работу, отвечая за наше эмоциональное состояние, вкусовые пристрастия и физическую активность. Многие свои тайны нейроны еще не раскрывают. Ведь даже самая простая теория о невосстановлении нейронов у некоторых ученых вызывает множество споров и вопросов. Они готовы доказать, что в некоторых случаях нервные клетки способны не только образовывать новые связи, но и самовоспроизводиться. Конечно, пока это всего лишь теория, но она вполне может оказаться жизнеспособной.

Работа по изучению функционирования центральной нервной системы крайне важна. Ведь благодаря открытиям в этой области фармацевты смогут разрабатывать новые препараты для активации деятельности головного мозга, а психиатры будут лучше понимать природу многих заболеваний, которые сейчас кажутся неизлечимыми.

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Аксон

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Дендриты

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении. Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности. Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов. Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика. Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза , где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.

Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.

Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – , а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже. Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки. Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения. На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс. На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель. На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели. Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению. Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов. Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга. Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты. Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем. В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия. Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга. Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы. Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление). Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга. Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга. Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток. В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».

Человеческий мозг – это центральная часть нервной системы. Здесь осуществляется управление всеми процессами, происходящими в организме, на основе информации, поступающей от внешнего мира.

Нейроны головного мозга – это структурные функциональные единицы нервной ткани, обеспечивающие способность живых организмов приспосабливаться к изменениям внешней среды. Человеческий мозг состоит из нейронов.

Функции нейронов головного мозга:

  • передача информации об изменениях внешней среды;
  • запоминание информации на длительный срок;
  • создание образа внешнего мира на основе полученных сведений;
  • организация оптимального поведения человека.

Все эти задачи подчинены одной цели – обеспечению живому организму успеха в борьбе за существование.

В этой статье будут рассмотрены следующие особенности нейронов:

  • строение;
  • взаимосвязь между собой;
  • виды;
  • развитие в разные периоды жизни человека.

В левом полушарии мозга содержится на 200 000 000 нейронов больше, чем в правом.

Строение нервной клетки

Нейроны в мозге имеют неправильную форму, они могут быть похожи на листик или цветок, обладать различными бороздами и извилинами. Цветовая палитра также разнообразна. Ученые полагают, что существует взаимосвязь между цветом и формой клетки и ее назначением.

Например, рецептивные поля клеток проекционной области зрительной коры имеют вытянутую форму, это помогает им избирательно реагировать на отдельные фрагменты линий с различной ориентацией в пространстве.

Каждая клетка имеет тело и отростки. В мозговой ткани принято выделять серое и белое вещество. Тела нейронов вместе с глиальными клетками, обеспечивающими защиту, изоляцию и сохранение структуры нервной ткани, составляют серое вещество. Отростки, организованные в пучки в соответствии с функциональным назначением, – это белое вещество.

Соотношение нейронов и глии у человека равно 1:10.

Виды отростков:

  • аксоны – имеют удлиненный вид, на конце ветвятся на терминали – нервные окончания, которые необходимы для передачи импульса к другим клеткам;
  • дендриты – более короткие, чем аксоны, также имеют разветвленную структуру; через них нейрон получает информацию.

Благодаря такому строению нейроны в головном мозге «общаются» между собой и объединяются в нейронные сети, которые и образуют мозговую ткань. И дендриты, и аксоны постоянно растут. Эта пластичность нервной системы лежит в основе развития интеллекта.

Нерв – это скопление многочисленных аксонов, принадлежащих разным нервным клеткам.

Синаптические связи

В основе формирования нейронных сетей лежит электрическое возбуждение, которое состоит из двух процессов:

  • запуск электрического возбуждения от энергии внешних воздействий – происходит за счет особой чувствительности мембран, расположенных на дендритах;
  • запуск клеточной активности на основании полученного сигнала и воздействие на другие структурные единицы нервной системы.

Быстродействие нейронов исчисляется несколькими миллисекундами.

Нейроны связаны между собой посредством специальных структур – синапсов. Они состоят из пресинаптической и постсинаптической мембран, между которыми находится синаптическая щель, заполненная жидкостью.

По характеру действия синапсы могут быть возбуждающими и тормозными. Передача сигналов может быть химической и электрической.

В первом случае на пресинаптической мембране синтезируются нейромедиаторы, которые поступают на рецепторы постсинаптической мембраны другой клетки из специальных пузырьков – везикул. После их воздействия в соседний нейрон могут массированно поступать ионы определенного вида. Это происходит через калийные и натриевые каналы. В обычном состоянии они закрыты, внутри клетки находятся отрицательно заряженные ионы, а снаружи – положительно. Следовательно, на оболочке образуется разница напряжений. Это потенциал покоя. После попадания положительно заряженных ионов внутрь возникает потенциал действия – нервный импульс.

Баланс клетки восстанавливается с помощью специализированных белков – калиево-натриевых насосов.

Свойства химических синапсов:

  • возбуждение осуществляется только в одном направлении;
  • наличие задержки от 0,5 до 2 мс при передаче сигнала, связанной с длительностью процессов выделения медиатора, его передачи, взаимодействия с рецептором и образования потенциала действия;
  • может возникать утомление, вызванное истощением запаса медиатора или появлением стойкой деполяризации мембраны;
  • высокая чувствительность к ядам, лекарственным препаратам и другим биологически активным веществам.

В настоящее время известно более 100 нейромедиаторов. Примеры этих веществ – дофамин, норадреналин, ацетилхолин.

Для электрической передачи характерна узкая синаптическая щель и пониженное сопротивление между мембранами. В таком случае потенциал, созданный на пресинаптической мембране, вызывает распространение возбуждения на постсинаптической мембране.

Свойства электрических синапсов:

  • скорость передачи информации выше, чем в химических синапсах;
  • возможна как односторонняя, так и двусторонняя передача сигнала (в обратную сторону).

Также существуют смешанные синапсы, в них возбуждение может передаваться как с помощью нейромедиаторов, так и с помощью электрических импульсов.

Память включает в себя хранение и воспроизведение полученной информации. В результате обучения остаются так называемые следы памяти, а их наборы образуют энграммы – «записи». Нейронный механизм заключается в следующем: по цепи много раз проходят определенные импульсы, формируются структурные и биохимические изменения в синапсах. Этот процесс называется консолидацией. Многократное использование одних и тех же контактов создает специфические белки – это и есть следы памяти.

Особенности развития мозговой ткани

Структуры мозга продолжают формироваться до 3 лет. Масса мозга удваивается к концу первого года жизни ребенка.

Зрелость нервной ткани определяется степенью развития двух процессов:

  • миелинизация – образование изолирующих оболочек;
  • синаптогенез – формирование синаптических связей.

Миелинизация начинается на 4 месяце внутриутробной жизни с эволюционно более «старых» структур мозга, отвечающих за сенсорные и моторные функции. В системах, контролирующих скелетную мускулатуру, — незадолго до появления на свет младенца, и активно продолжается в течение первого года жизни. А в областях, связанных с высшими психическими функциями, такими как обучение, речь, мышление, миелинизация начинается лишь после рождения.

Именно поэтому в этот период особенно опасны инфекции и вирусы, оказывающие вредное воздействие на мозг. Это можно сравнить с автомобильной аварией: столкновение на маленькой скорости принесет меньший урон, чем на большой. Так и здесь – вмешательство в активный процесс созревания может нанести огромный вред и привести к печальным последствиям – ДЦП, олигофрении или задержке психического развития.

Стабилизация психофизиологических характеристик индивида происходит в 20 – 25 лет.

Процесс развития отдельной нервной клетки начинается с образования, имеющего специфическую электрическую активность. Его отростки, вытягиваясь, проникают в окружающие ткани и устанавливают синаптические контакты. Таким образом происходит иннервация (управление) всеми органами и системами организма. Данный процесс контролируется более чем половиной генов человека.

Клетки объединяются в особые связанные структуры – нейросети, которые выполняют конкретные функции.

Одно из научных предположений гласит, что иерархия структуры нейронов в головном мозге напоминает устройство Вселенной.

Развитие нейронов, их специализация, продолжается в течение всей жизни человека. У взрослого и младенца число нейронов приблизительно совпадает, но длина отростков и их количество отличается во много раз. Это связано с обучением и формированием новых связей.

Продолжительность существования нервных клеток и их хозяина чаще всего совпадает.

Виды нервных клеток

Каждый элемент в нейронной системе мозга выполняет определенную функцию. Рассмотрим, за что отвечают определенные виды нейронов.

Рецепторы

Большая часть рецепторных нейронов располагается в , их функция – передавать сигнал от рецепторов органов чувств в центральную нервную систему.

Командные нейроны

Здесь сходятся пути от клеток-детекторов, кратковременной и долговременной памяти и осуществляется принятие решения в ответ на входящий сигнал. Далее поступает команда в премоторные зоны, и формируется реакция.

Эффекторы

Они транслируют сигнал к органам и тканям. Эти нейроны имеют длинные аксоны. Мотонейроны – это эффекторные клетки, аксоны которых образуют нервные волокна, ведущие к мышцам. Эффекторные нейроны, регулирующие деятельность вегетативной нервной системы (к ней относятся обмен веществ, управление внутренними органами, дыхание, сердцебиение – все, что происходит без сознательного контроля), находятся за пределами головного мозга.

Промежуточные

Еще их называют контактными или вставочными – эти клетки являются связующим звеном между рецепторами и эффекторами.

Зеркальные нейроны

Данные нейроны обнаружены в различных участках центральной нервной системы. Считается, что эволюционно они появились для того, чтобы детеныши лучше и быстрее устраивались в окружающем мире.

Клетки были обнаружены в результате опыта с обезьянами. Животное доставало еду из кормушки специальными инструментами. Когда ученый делал то же самое, было выявлено, что у подопытной особи активируются определенные участки коры, как будто бы это делала она сама.

На работе зеркальных нейронов базируются эмпатия, социальные навыки, обучение, повторение, имитация. Способность прогнозировать тоже относится к этим клеткам.

Ученые установили: отчетливо представлять и делать – почти одно и то же. Такой метод психотерапии как визуализация построен на этом постулате.

Зеркальный нейроны – основа передачи культурного пласта от поколения к поколению и его наращивания. Например, обучаясь живописи, сначала мы повторяем уже существующие способы, то есть имитируем. А потом, на основе этого опыта, создаются оригинальные работы.

Нейроны новизны и тождества

Нейроны новизны впервые были обнаружены при исследовании лягушек, впоследствии были найдены и у человека. Эти клетки перестают отвечать на повторяющийся стимул. Изменение же сигнала, наоборот, провоцирует их активацию.

Клетки тождества определяют повторяющийся сигнал, что позволяет выдать ранее использовавшуюся реакцию, иногда даже опережая стимул – экстраполярный ответ.

Их совместное действие подчеркивает новизну, ослабляет влияние привычных стимулов и оптимизирует время формирования ответного поведения.

Заболевания, связанные с дефектами нервной ткани

В основе многих расстройств здоровья человека могут лежать различные нарушения нейронных связей головного мозга.

Аутизм

Ученые полагают, что аутизм связан с неразвитостью или дисфункцией зеркальных нейронов. Малыш, смотря на взрослого, не может понять поведение и эмоции другого человека и спрогнозировать его действия. Зарождается страх. Защитная реакция – замыкание в себе.

Болезнь Паркинсона

Причина нарушения двигательных функции при данном недуге – повреждение и гибель нейронов, продуцирующих дофамин.

Болезнь Альцгеймера

Одной из возможных причин является снижение производства нейромедиатора ацетилхолина. Второй вариант – накопление в нервной ткани амилоидных бляшек – патологического белкового налета.

Шизофрения

Одна из теорий гласит, что между клетками мозга шизофреника имеется нарушение контактов. Исследования показали, что у таких людей неправильно работают гены, отвечающие за выделение нейромедиаторов в синапсах. Еще одна версия – излишняя выработка дофамина. Третья теория происхождения заболевания – снижение скорости прохождения нервных импульсов вследствие повреждения миелиновых оболочек.

Нейродегеративные заболевания (связанные с гибелью нейронов) дают о себе знать тогда, когда большая часть клеток погибла, поэтому лечение начинается на поздних стадиях. Человек выглядит здоровым, признаков болезни нет, а опасный процесс уже запущен. Это происходит от того, что человеческий мозг очень пластичен и имеет мощные компенсаторные механизмы. Пример: когда умирают нейроны-производители дофамина при , оставшиеся клетки продуцируют большее количество вещества. Также увеличивается чувствительность к нейромедиатору клеток, принимающих сигнал. Какое-то время эти процессы не дают проявляться симптомам болезни.

При недугах, вызванных аномалиями хромосом (синдром Дауна, синдром Вильямса), обнаруживаются патологические виды нервных клеток.

Как сохранить нервные клетки здоровыми

Сохранение нейронов в здоровом состоянии – залог счастливой жизни и возможности вести активный образ жизни в пожилом возрасте. Наши рекомендации помогут вам в этом.

  1. Интеллектуальная деятельность в течение жизни способствует сохранению работоспособности до старости. Необходимо давать нервным клеткам нагрузку, создавать новые нейронные связи и укреплять старые, тренировать мозг.
  2. Питаться нужно полезными продуктами, содержащими жиры, так как оболочка нейронов состоит, по сути, из жиров – липидов.
  3. Пить больше жидкости – мозг состоит на 75% из воды. По этой же причине не следует злоупотреблять алкоголем, так как он обезвоживает организм.
  4. Чтобы помочь нейронам головного мозга проснуться с утра, хорошо дать им небольшую разминку, например, разгадать кроссворд, вспомнить несколько слов иностранного языка, решить математическую задачу.
  5. Дышать свежим воздухом – 20% от вдыхаемого кислорода потребляет головной мозг.
  6. Физические упражнения улучшают кровообращение во всем организме, а кровь снабжает мозг кислородом.
  7. Сон не менее 7-9 часов в сутки. Когда мы спим, полученная за день информация систематизируется: всем известно, что Менделеев увидел периодическую систему химических элементов во сне. Если человек отдыхает недостаточно, ресурсы мозга будут истощаться.

Заключение

Пластичность нейронов головного мозга позволяет не только выполнять генетически заданные программы, но и выстраивать новые. По образу и подобию человеческой нервной системы ведутся работы в области создания искусственного интеллекта. Существует множество научных споров об этичности, возможностях и опасностях данных разработок. В настоящее время исследователи рассматривают новые концепции образования нервных связей, применяя сложнейшие математические методы. Человеческий мозг до сих пор таит в себе множество загадок, которые еще предстоит раскрыть ученым.

Нейроны головного мозга. История открытия нейрона. Строение нейрона. Рождение нейрона, миграция, его функции и механизм действия. Отчего гибнут нейроны.

Нейроны головного мозга – термин на слуху у каждого кому близка тема ДЦП, но далеко не каждый знает, что собой представляет нейрон, как устроен и как работает.

Нейрон, или неврон в переводе с греческого – волокно, нерв.

Нейроны - это узкоспециализированные клетки из которых состоит нервная система. Задача нейронов – обмен информацией между телом и мозгом.

Нейроны - электрически возбудимые клетки, которые обрабатывают, хранят и передают информацию с помощью электрических и химических сигналов.

Нейроны головного мозга – история открытия

До недавнего времени большинство нейробиологов считали, что мы рождаемся с определенным набором нейронов и это окончательная цифра. В дальнейшем нейроны могут только гибнуть, но не могут восстанавливаться. Видимо отсюда и произошло высказывание, что «нервные клетки не восстанавливаются».

Используя набор нейронов, данных при рождении, ребенок по мере взросления выстраивает их в цепочки, соответствующие определенным навыкам и опыту. Таким образом эти цепочки являются информационными магистралями между мозгом и различными участками тела. Ученые полагали, что после того как нейроны головного мозга создали цепь, добавление в неё новых нейронов невозможно т.к. это нарушит информационный поток и отключит коммуникативную систему мозга.

В 1962 году представление о нейронах претерпело значительное изменение. Нейробиологу Джозефу Альтману удалось доказать факт рождения новых нейронов в мозге взрослой крысы. А в последующие годы были приведены доказательства миграции новых нейронов от места своего рождения в другие области мозга.

В 1983 году процесс рождения новых нейронов удалось зафиксировать и в мозге взрослой обезьяны.

Это открытие было настолько удивительным и невероятным, а мнение о нейронах мозга настолько устоявшимся, что что многие ученые отказывались верить, в возможность подобных процессов в мозге человека.

Однако последние десятилетия доказали рождение нейронов и в мозге взрослого человека.

Для некоторых нейробиологов и по сей день нейрозенез во взрослом мозге является недоказанной теорией. Но большинство считают, что открытие нейрогенеза открывает невероятные возможности в области неврологии человека.

Строение нейрона

Основными составляющими нейрона являются:

  • тело клетки с ядром
  • расширения клетки – аксон и дентрит
  • терминаль (концевая ветвь аксона)
  • глии (глиальные клетки)

Центральная нервная система (включая головной и спинной мозг) состоит из двух основных типов клеток – нейроны и глии. Глии количественно превосходят нейроны, но нейрон остается главной клеткой нервной системы.

Нейроны используют электрические импульсы и химические сигналы для передачи информации между различными областями мозга, а также между мозгом и остальной частью нервной системы.

Все, что мы думаем, чувствуем и делаем, было бы невозможно без работы нейронов и их опорных клеток, глиальных клеток.

Нейроны имеют три основные части: тело клетки и два расширения, называемые аксоном и дендритом. Внутри тела клетки находится ядро, которое контролирует активность клетки и содержит генетический материал клетки.

Аксон выглядит как длинный хвост, его задача передавать сообщения. Дендриты выглядят как ветви дерева и выполняют функции получения сообщений. Нейроны общаются друг с другом через крошечное пространство, называемое синапсом, между аксонами и дендритами соседних нейронов.

Существует три класса нейронов:

  1. Сенсорные нейроны- несут информацию из органов чувств (таких как глаза, уши, нос) в мозг.
  2. Моторные (двигательные) нейроны- контролируют добровольную мышечную активность, такую как речь, а также передают сообщения от нервных клеток в мышцы.
  3. Все остальные нейроны называются — интернейронами.

Нейроны являются наиболее разнообразными клетками в организме. Внутри этих трех классов нейронов есть сотни разных типов, каждый из которых обладает определенными способностями к передаче данных.

Общаясь друг с другом нейроны создают уникальные связи, это делает каждого из нас не похожим на другого в том, как мы думаем, чувствуем и действуем.

Зеркальные нейроны

Очень интересны функции зеркальных нейронов. Зеркальные нейроны – это такая разновидность нейронов головного мозга, которые возбуждаются не только при самостоятельном выполнении действия, но и при наблюдении за тем, как это действие выполняют другие.

Таким образом можно сказать, что зеркальные нейроны отвечают за подражание или имитацию.

Изучение принципов работы зеркальных нейронов очень перспективно в решении проблем реабилитации церебрального паралича.

Рождение нейронов

Рождение новых нейронов по-прежнему является вопросом, вокруг которого не умолкают споры. Хотя есть неоспоримые данные, подтверждающие что нейрогенез (рождение нейронов) процесс, не прекращающийся на протяжении всей жизни индивида.

Нейроны рождаются в особых клетках, называемых – . Наука о стволовых клетках является довольно молодой и вопросов в ней пока больше, чем ответов. Но мы знаем, что метод лечения ДЦП при помощи стволовых клеток уже имеет место быть и достаточно успешно используется.

Миграция нейронов

Очень интересный вопрос – ! Рождение нейрона по запросу нервной системы это только половина дела, ведь ему еще нужно добраться туда откуда послан запрос и где его ждут.

Как нейрон понимает куда ему идти и что помогает ему туда добраться? В настоящее время ученые увидели два процесса доставки нейронов от места рождения в другие отделы мозга.

  1. Передвижение по специальным клеткам – радиальным глиям. Эти клетки простирают свои волокна от внутренних слоев мозга к внешним. И нейроны скользят по ним, пока не достигнут места назначения.
  2. Химические сигналы. На поверхности нейронов были обнаружены специальные молекулы – адгезии, которые связываются с подобными молекулами на соседних глиальных клетках или аксонах нерва. И так передавая сигнал друг другу ведут нейрон к его окончательному местоположению.

Не все нейроны успешно преодолевают этот путь. Есть мнение, что две трети нейронов гибнет в пути. А часть из тех, что выжили сбиваются с пути и в последствии внедряются в цепочки на не свои места.

Некоторые ученые подозревают, что такие ошибки приводят к шизофрении, дислексии, . Доказательств нет, только предположение.

Гибель нейронов

В норме нейроны – клетки долгожители в организме человека. Но иногда они начинают массово гибнуть в тех или иных структурах мозга, приводя к различным заболеваниям нервной системы. Иногда причины их гибели удается установить, иногда нет, вопрос остается открытым.

Так, например, известно, что при болезни Паркинсона гибнут нейроны, которые продуцируют дофамин, в области мозга, которая контролирует движения тела. Это приводит к трудностям при инициировании движения. Что является спусковым механизмом этого процесса — нет ответа.

При болезни Альцгеймера враждебные белки накапливаются в нейронах и вокруг нейронов в неокортексе и гиппокампе (части мозга), которые контролируют память. Когда эти нейроны умирают, люди теряют способность запоминать и способность выполнять повседневные задачи.

Гипоксия мозга – приводит к кислородному голоданию нейронов и в дальнейшем, если процесс не остановить вовремя, к их гибели.

Физические травмы мозга – приводят к разрыву связей между нейронами. Таким образом нейроны живы, но у них нет возможности взаимодействовать друг с другом.

Искусственный нейрон

Дальнейшее изучение вопросов жизни и гибели нейронов, дает надежду на разработку новых методов лечения нервной системы.

Современные исследования показывают, что нервные клетки в состоянии восстанавливаться. Стволовые клетки могут генерировать все типы нейронов. Возможно стволовыми клетками можно манипулировать и стимулировать в них рождение новых нейронов необходимого типа.

Таким образом процесс восстановления, обновления мозга, замены погибших нейронов нейронами нового поколения – звучит не так уж фантастически.

Возможно термин – искусственные нейроны головного мозга, это наше не такое уж далекое будущее.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top