Сообщение о нейроне. Строение и виды нейронов

Сообщение о нейроне. Строение и виды нейронов

Отдельные нервные клетки, или нейроны , выполняют свои функции не как изолированные единицы, подобно клеткам печени или почек. Работа 50 миллиардов (или около того) нейронов нашего мозга состоит в том, что они получают сигналы от каких-то других нервных клеток и передают их третьим.

Передающие и принимающие клетки объединены в нервные цепи или сети (см. рис. 26). Отдельный нейрон с дивергентной структурой (от лат. diverge - отклоняюсь) может посылать сигналы тысяче и даже большему числу других нейронов. Но чаще один такой нейрон соединяется всего лишь с несколькими определенными нейронами. Точно так же какой-либо нейрон может получать входную информацию от других нейронов с помощью одной, нескольких или многих входных связей, если на нем сходятся конвергентные пути (от лат. converge - приближаюсь, схожусь). Конечно, все зависит от того, какую именно клетку мы рассматриваем и в какую сеть она оказалась включенной в процессе развития. Вероятно, в каждый момент времени активна лишь небольшая часть путей, оканчивающихся на данном нейроне.

Действительные места соединения - специфические точки на поверхности нервных клеток, где происходит их контакт, - называются синапсами (synapsis; греч. «соприкосновение», «соединение») (см. рис. 26 и 27), а сам процесс передачи информации в этих местах - синаптической передачей . При взаимодействии нейронов с помощью синаптической передачи посылающая сигнал (пресинаптическая) клетка выделяет определенное вещество на рецепторную поверхность воспринимающего (постсинаптического) нейрона. Это вещество, называемое нейромедиатором , служит молекулярным посредником для передачи информации от передающей клетки к воспринимающей. Нейромедиатор замыкает цепь, осуществляя химическую передачу информации через синаптическую щель - структурный разрыв между передающей и воспринимающей клетками в месте синапса.

Особенности нервных клеток

Нейроны обладают рядом признаков, общих для всех клеток тела. Независимо от своего местонахождения и функций любой нейрон, как и всякая другая клетка, имеет плазматическую мембрану , определяющую границы индивидуальной клетки. Когда нейрон взаимодействует с другими нейронами или улавливает изменения в локальной среде, он делает это с помощью плазматической мембраны и заключенных в ней молекулярных механизмов.

Все, что находится внутри плазматической мембраны (кроме ядра), называется цитоплазмой . Здесь содержатся цитоплазматические органеллы , необходимые для существования нейрона и выполнения им своей работы (см. рис. 27 и 28). Митохондрии обеспечивают клетку энергией, используя сахар и кислород для синтеза специальных высокоэнергетических молекул, расходуемых клеткой по мере надобности. Микротрубочки - тонкие опорные структуры - помогают нейрону сохранять определенную форму. Сеть внутренних мембранных канальцев, с помощью которых клетка распределяет продукты, необходимые для ее функционирования, называется эндоплазматическим ретикуломом .

Существует два вида эндоплазматического ретикулума. Мембраны «шероховатого», или гранулярного, ретикулума усеяны рибосомами , необходимыми клетке для синтеза секретируемых ею белковых веществ. Обилие элементов шероховатого ретикулума в цитоплазме нейронов характеризует их как клетки с весьма интенсивной секреторной деятельностью. Белки, предназначенные только для внутриклеточного использования, синтезируются на многочисленных рибосомах, не прикрепленных к мембранам ретикулума, а находящихся в цитоплазме в свободном состоянии. Другой вид эндоплазматического ретикулума называют «гладким». Органеллы, построенные из мембран гладкого ретикулума, упаковывают продукты, предназначенные для секреции, в «мешочки» из таких мембран для последующего переноса их к поверхности клетки, где они выводятся наружу. Гладкий эндоплазматический ретикулум называют также аппаратом Гольджи , по имени итальянца Эмилио Гольджи, который впервые разработал метод окраски этой внутренней структуры, сделавший возможным ее микроскопическое изучение.

Камилло Гольджи (1844-1926). Фотография сделана в начале 1880-х годов, когда Гольджи был профессором университета в Павии. В 1906 году он разделил с Кахалом Нобелевскую премию по физиологии и медицине.

Сантьяго Рамон-и-Кахал (1852-1934). Поэт, художник и гистолог, обладавший поразительным творческим потенциалом, он преподавал в основном в Мадридском университете. Этот автопортрет он создал в 1920-х годах.

В центре цитоплазмы находится клеточное ядро . Здесь у нейронов, как и у всех клеток с ядрами, содержится генетическая информация, закодированная в химической структуре генов. В соответствии с этой информацией полностью сформированная клетка синтезирует специфические вещества, которые определяют форму, химизм и функции этой клетки. В отличие от большинства других клеток тела зрелые нейроны не могут делиться, и генетически обусловленные продукты любого нейрона должны обеспечивать сохранение и изменение его функций на протяжении всей его жизни.

Нейроны сильно различаются по своей форме, по связям, которые они образуют, и способам функционирования. Наиболее очевидное отличие нейронов от других клеток заключается в разнообразии их размеров и формы. Большинство клеток тела имеет шарообразную, кубическую или пластинчатую форму. Для нейронов же характерны неправильные очертания: у них имеются отростки, часто многочисленные и разветвленные. Эти отростки - живые «провода», с помощью которых образуются нейронные цепи. Нервная клетка имеет один главный отросток, называемый аксоном (греч. ax?n - ось), по которому она передает информацию следующей клетке в нейронной цепи. Если нейрон образует выходные связи с большим числом других клеток, его аксон многократно ветвится, чтобы сигналы могли дойти до каждой из них.

Рис. 28. Внутреннее строение типичного нейрона. Микротрубочки обеспечивают структурную жесткость, а также транспортировку материалов, синтезируемых в теле клетки и предназначенных для использования в окончании аксона (внизу). В этом окончании находятся синаптические пузырьки, содержащие медиатор, а также пузырьки, выполняющие иные функции. На поверхности постсинаптического дендрита показаны предполагаемые места рецепторов для медиатора (см. также рис. 29).

Другие отростки нейрона называются дендритами . Этот термин, происходящий от греческого слова dendron - «дерево», означает, что они имеют древовидную форму. На дендритах и на поверхности центральной части нейрона, окружающей ядро (и называемой перикарионом , или телом клетки), находятся входные синапсы, образуемые аксонами других нейронов. Благодаря этому каждый нейрон оказывается звеном той или иной нейронной сети.

В разных участках цитоплазмы нейрона содержатся различные наборы специальных молекулярных продуктов и органелл. Шероховатый эндоплазматический ретикулум и свободные рибосомы обнаружены только в цитоплазме тела клетки и в дендритах. В аксонах эти органеллы отсутствуют, и поэтому синтез белка здесь невозможен. Окончания аксонов содержат органеллы, называемые синаптическими пузырьками , в которых находятся молекулы медиатора, выделяемого нейроном. Полагают, что каждый синаптический пузырек несет в себе тысячи молекул вещества, которое используется нейроном для передачи сигналов другим нейронам (см. рис. 29).

Рис. 29. Схема выброса медиатора и процессов, происходящих в гипотетическом центральном синапсе.

Дендриты и аксоны сохраняют свою форму благодаря микротрубочкам, которые, по-видимому, играют также роль в передвижении синтезированных продуктов из центральной цитоплазмы к очень далеким от нее концам ветвящихся аксонов и дендритов. При методе окраски, разработанном Гольджи, используется металлическое серебро, которое связывается с микротрубочками и позволяет выявить форму изучаемой нервной клетки. В начале XX века испанский микроанатом Сантьяго Рамон-и-Кахал почти интуитивно применил этот метод для установления клеточной природы организации мозга и для классификации нейронов в соответствии с их уникальными и общими структурными особенностями.

Различные названия нейронов

Нейроны в зависимости от контекста могут называться по-разному. Иногда это может сбить с толку, но на самом деле это очень похоже на то, как мы называем себя или наших знакомых. Смотря по обстоятельствам, мы говорим об одной и той же девушке как о студентке, дочери, сестре, рыжеволосой красавице, пловчихе, любимой или члене семейства Смитов. Нейроны тоже получают столько ярлыков, сколько различных ролей они выполняют. Разные ученые использовали, вероятно, все достойные внимания свойства нейронов в качестве основы для их классификации.

Каждая уникальная структурная особенность того или иного нейрона отражает степень его специализации для выполнения определенных задач. Можно называть нейроны в соответствии с этими задачами, или функциями. Это один способ. Например, нервные клетки, объединенные в цепи, которые помогают нам воспринимать внешний мир или контролировать события, происходящие внутри нашего тела, именуются сенсорными (чувствительными) нейронами. Нейроны, объединенные в сети, вызывающие мышечные сокращения и, следовательно, движение тела, называются моторными или двигательными.

Положение нейрона в сети - другой важный критерий наименования. Нейроны, ближе всего расположенные к месту действия (будь то ощущаемый стимул или активируемая мышца), - это первичные сенсорные или моторные нейроны, или нейроны первого порядка. Далее следуют вторичные нейроны (нейроны второго порядка), затем третичные (третьего порядка) и т.д.

Регуляция нейронной активности

Способность нервной системы и мышц генерировать электрические потенциалы известна давно - со времен работ Гальвани в конце XVIII столетия. Однако наши знания о том, как возникает это биологическое электричество при функционировании нервной системы, основаны на исследованиях всего лишь 25-летней давности.

Все живые клетки обладают свойством «электрической полярности». Это означает, что по отношению к какой-то отдаленной и явно нейтральной точке (электрики называют ее «землей») внутренняя часть клетки испытывает относительный недостаток положительно заряженных частиц и поэтому, как мы говорим, отрицательно заряжена относительно наружной стороны клетки. Что же это за частицы, находящиеся внутри и вне клеток нашего тела?

Жидкости нашего тела - плазма, в которой плавают клетки крови, внеклеточная жидкость, заполняющая пространство между клетками различных органов, спинномозговая жидкость, находящаяся в желудочках мозга, - все это особые разновидности соленой воды. (Некоторые ученые, мыслящие историческими категориями, усматривают в этом следы того периода эволюции, когда все живые создания существовали в первичном океане.) Встречающиеся в природе соли обычно составлены из нескольких химических элементов - натрия, калия, кальция и магния, несущих положительные заряды в жидкостях тела, и хлорида, фосфата и остатков некоторых более сложных кислот, образуемых клетками и несущих отрицательный заряд. Заряженные молекулы или атомы именуются ионами .

Во внеклеточных пространствах положительные и отрицательные ионы распределены свободно и в равных количествах, так что они нейтрализуют друг друга. Внутри клеток, однако, относительный дефицит положительно заряженных ионов обусловливает общий отрицательный заряд. Этот отрицательный заряд возникает потому, что плазматическая мембрана проницаема не для всех солей в равной мере. Некоторые ионы, например К + , обычно проникают сквозь мембрану легче, чем другие, такие, как ионы натрия (Na +) или кальция (Ca 2+). Внеклеточные жидкости содержат довольно много натрия и мало калия. Внутри клеток жидкости относительно бедны натрием и богаты калием, но общее содержание положительных ионов внутри клетки не вполне уравновешивает отрицательные заряды хлорида, фосфата и органических кислот цитоплазмы. Калий проходит через клеточную мембрану лучше других ионов и, по-видимому, весьма склонен выходить наружу, так как концентрация его внутри клеток намного выше, чем в окружающей их среде. Таким образом, распределение ионов и избирательность их перехода через полупроницаемую мембрану приводят к созданию отрицательного заряда внутри клеток.

В то время как описанные факторы ведут к установлению трансмембранной ионной полярности, другие биологические процессы способствуют ее поддержанию. Один из таких факторов - очень эффективные ионные насосы, которые существуют в плазматической мембране и получают энергию от митохондрий. Такие насосы «откачивают» ионы натрия, поступающие в клетку с молекулами воды или сахара.

«Электрически возбудимые» клетки, подобные нейронам, обладают способностью регулировать свой внутренний отрицательный потенциал. При воздействии некоторых веществ в «возбуждающих» синапсах свойства плазматической мембраны постсинаптического нейрона изменяются. Внутренность клетки начинает терять свой отрицательный заряд, и натрий не встречает больше препятствий для перехода внутрь через мембрану. Действительно, после проникновения в клетку некоторого количества натрия переход натрия и других положительных ионов (кальция и калия) внутрь клетки, т.е. деполяризация, во время краткого периода возбуждения протекает столь успешно, что внутренность нейрона менее чем на 1/1000 секунды становится заряженной положительно. Этот переход от обычного отрицательного состояния содержимого клетки к кратковременному положительному называют потенциалом действия или нервным импульсом . Положительное состояние длится так недолго потому, что реакция возбуждения (повышенное поступление в клетку натрия) носит саморегулируемый характер. Присутствие повышенных количеств натрия и кальция в свою очередь ускоряет эвакуацию калия, по мере того как ослабевает действие возбуждающего импульса. Нейрон быстро восстанавливает электрохимическое равновесие и возвращается к состоянию с отрицательным потенциалом внутри до следующего сигнала.

Рис. 30. Когда нейрон активируется приходящим к нему возбуждающим импульсом, волна деполяризации временно меняет знак мембранного потенциала. По мере распространения волны деполяризации вдоль аксона последовательные участки аксона тоже претерпевают эту временную реверсию. Потенциал действия можно описать как поток положительно заряженных ионов натрия (Na +), переходящих через мембрану внутрь нейрона.

Деполяризация, связанная с потенциалом действия, распространяется вдоль аксона как волна активности (рис. 30). Движение ионов, возникающее около деполяризованного участка, способствует деполяризации следующего участка, и в результате каждая волна возбуждения быстро достигает всех синаптических окончаний аксона. Главное преимущество электрического проведения импульса по аксону состоит в том, что возбуждение быстро распространяется на большие расстояния без какого-либо ослабления сигнала.

Кстати, нейроны с короткими аксонами, по-видимому, не всегда генерируют нервные импульсы. Это обстоятельство, если оно будет твердо установлено, может иметь далеко идущие последствия. Если клетки с короткими аксонами способны изменять уровень активности, не генерируя потенциалы действия, то исследователи, пытающиеся по электрическим разрядам оценить роль отдельных нейронов в определенных видах поведения, легко могут упустить из виду многие из важных функций «молчащих» клеток.

Синаптические медиаторы

С некоторыми оговорками синапсы можно сравнить с перекрестками на проводящих путях мозга. В синапсах сигналы передаются только в одном направлении - с концевой веточки посылающего их пресинаптического нейрона на ближайший участок постсинаптического нейрона. Однако быстрая электрическая передача, так хорошо действующая в аксоне, в синапсе не работает. Не вдаваясь в биологические причины этого, мы можем просто констатировать, что химическая связь в синапсах обеспечивает более тонкую регуляцию свойств мембраны постсинаптической клетки.

При общении друг с другом люди передают основное содержание своей речи словами. Чтобы сделать более тонкие акценты или подчеркнуть дополнительный смысл слов, они пользуются тембром голоса, мимикой, жестами. При коммуникации нервных клеток основные единицы информации передаются специфическими химическими посредниками - синаптическими медиаторами (определенный нейрон использует один и тот же медиатор во всех своих синапсах). Если продолжить нашу аналогию с вербальным и невербальным способом общения, то можно сказать, что одни химические посредники передают «факты», а другие - дополнительные смысловые оттенки или акценты.

Рис. 31. Противоположное действие возбуждающего (слева) и тормозного (справа) медиаторов можно объяснить тем, что они влияют на разные ионные каналы.

Вообще говоря, существуют два вида синапсов - возбуждающие и тормозные (рис. 31). В первом случае одна клетка приказывает другой переходить к активности, а во втором, наоборот, затрудняет активацию клетки, которой передается сигнал. Под действием постоянных тормозящих команд некоторые нервные клетки хранят молчание до тех пор, пока возбуждающие сигналы не заставят их активироваться. Например, нервные клетки спинного мозга, которые приказывают вашим мышцам действовать, когда вы ходите или танцуете, обычно «молчат», пока не получат возбуждающих импульсов от клеток моторной коры. Под действием спонтанных возбуждающих команд другие нервные клетки переходят к активности, не дожидаясь осознанных сигналов; например, нейроны, управляющие движениями грудной клетки и диафрагмы при дыхании, подчиняются клеткам более высокого уровня, которые реагируют только на концентрацию О 2 и СО 2 в крови.

Судя по тому, что сегодня известно науке, межнейронные взаимодействия, происходящие в мозгу, можно в основном объяснить, исходя из возбуждающих и тормозных синаптических воздействий. Однако существуют и более сложные модифицирующие воздействия, которые имеют большое значение, так как они усиливают или уменьшают интенсивность ответной реакции нейрона на входные сигналы от различных других нейронов.

Рассмотрим модифицирующие медиаторные сигналы, представив себе, что они носят условный характер. Под термином «условный» подразумевается, что клетки реагируют на них только при определенных условиях, т.е. тогда, когда эти сигналы действуют в сочетании с другими возбуждающими или тормозными сигналами, приходящими по другим путям. Музыканты, например, могли бы считать условным действие педалей у фортепьяно - в том смысле, что для достижения какого-нибудь эффекта их нажатие должно сочетаться с другим действием. Просто нажимать на педали, не ударяя при этом по клавишам, бессмысленно. Звучание ноты изменяется лишь тогда, когда мы нажимаем одновременно и на педаль, и на клавишу. Многие нейронные сети, выполняющие условные функции, - это те, медиаторы которых играют важную роль в лечении депрессии, шизофрении и некоторых других психических расстройств (более подробно эти проблемы обсуждаются в гл. 9).

В заключение несколько слов о процессах, лежащих в основе различных изменений, производимых медиаторами в клетках, на которые они воздействуют. Эти изменения обусловлены ионными механизмами, связанными с электрической и химической регуляцией свойств мембраны. Возбудимость нейрона изменяется потому, что медиатор изменяет поток ионов, переходящих внутрь клетки или же из клетки наружу. Для того чтобы ионы могли проходить через мембрану, в ней должны быть отверстия. Это не просто дыры, а специальные крупные трубчатые белки, называемые «каналами». Некоторые из этих каналов специфичны для определенного иона - натрия, калия или кальция, например; другие не столь избирательны. Некоторые каналы могут открываться с помощью электрических команд (таких, как деполяризация мембраны при потенциале действия); другие открываются и закрываются под действием химических посредников.

Рис. 32. Схема адаптивных регуляторных процессов, используемых для поддержания нормальной синаптической передачи несмотря на изменения, вызываемые различными препаратами, а также, возможно, заболеваниями. Регулируется количество высвобождаемого или воспринимаемого медиатора. Слева - нормальное состояние. В середине - из-за недостаточного синтеза или сохранения медиатора постсинаптическая клетка увеличивает число рецепторов. Справа - при повышенном выбросе медиатора постсинаптическая клетка уменьшает число или эффективность рецепторов.

Полагают, что каждый химический посредник оказывает на клетки воздействие с помощью химически обусловленных изменений в ионной проницаемости. Определенные ионы и молекулы, используемые тем или иным медиатором, становятся поэтому химическим эквивалентом передаваемого сигнала.

Изменчивость нейронных функций

Как мы видели, нейрон должен успешно справляться с определенными задачами, чтобы функционировать как часть специфической нейронной сети. Медиатор, который он использует, должен передавать определенную информацию. У нейрона должны быть поверхностные рецепторы, с помощью которых он мог бы связывать медиатор в своих входных синапсах. Он должен иметь необходимые запасы энергии для «откачивания» избыточных ионов обратно через мембрану. Нейроны с длинными ветвящимися аксонами должны также транспортировать ферменты, медиаторы и другие молекулы из центральных участков цитоплазмы, где происходит их синтез, в отдаленные части дендритов и аксонов, где эти молекулы будут нужны. Как правило, скорость, с которой нейрон выполняет эти функции, зависит от массы его дендритной и аксонной систем и от общего уровня активности клетки.

Общая выработка энергии - метаболическая активность клетки - может изменяться в соответствии с требованиями межнейронных взаимодействий (рис. 32). Нейрон может повышать свою способность к синтезу и транспортировке специфических молекул в периоды усиленной деятельности. Точно так же при малой функциональной нагрузке нейрон может снизить уровень активности. Эта способность к регуляции фундаментальных внутриклеточных процессов позволяет нейрону гибко приспосабливаться к самым различным уровням активности.

Генетическая детерминация основных типов нейронных сетей

Для того чтобы мозг нормально функционировал, потоки нервных сигналов должны находить надлежащие маршруты среди клеток различных функциональных систем и межрегиональных объединений. В главе 1 мы получили некоторые элементарные сведения о сложном процессе построения и развития мозга. Однако до сих пор остается загадкой, каким образом аксоны и дендрита той или иной нервной клетки растут именно в том направлении, чтобы создавались специфические связи, необходимые для ее функционирования. Между тем тот факт, что конкретные молекулярные механизмы, лежащие в основе многих процессов онтогенеза, еще не раскрыты, не должен заслонять от нас другого, еще более поразительного факта-того, что из поколения в поколение в мозгу развивающихся животных действительно устанавливаются нужные связи. Исследования в области сравнительной нейроанатомии говорят о том, что по фундаментальному плану строения мозг очень мало изменился в процессе эволюции. Нейроны специализированного зрительного рецепторного органа - сетчатки - всегда соединяются с вторичными нейронами зрительной, а не слуховой или осязательной системы. В то же время первичные слуховые нейроны из специализированного органа слуха - улитки - всегда идут к вторичным нейронам слуховой системы, а не зрительной или обонятельной. Точно такая же специфичность связей характерна для любой системы мозга.

Высокая специфичность структуры мозга имеет важное значение. Общий диапазон связей для большинства нервных клеток, по-видимому, предопределен заранее , причем эта предопределенность касается тех клеточных свойств, которые ученые считают генетически контролируемыми . Набор генов, предназначенных для проявления в развивающейся нервной клетке, каким-то еще до конца не установленным образом определяет как будущий тип каждой нервной клетки, так и принадлежность ее к той или иной сети. Концепция генетической детерминированности приложима и ко всем остальным особенностям данного нейрона -например к используемому им медиатору, к размерам и форме клетки. Как внутриклеточные процессы, так и межнейронные взаимодействия определяются генетической специализацией клетки.

Три генетически детерминированных типа нервных сетей

Чтобы сделать концепцию генетической детерминации нейронных сетей более понятной, давайте уменьшим их число и представим себе, что наша нервная система состоит всего лишь из 9 клеток (см. рис. 33). Это абсурдное упрощение поможет нам увидеть сети трех основных типов, которые встречаются повсюду, - иерархические, локальные и дивергентные с одним входом . Хотя число элементов в сетях может быть различным, выделенные три типа могут служить основой для построения надежной классификационной схемы.

Иерархические сети . Наиболее распространенный тип межнейронных связей можно увидеть в главных сенсорных и двигательных путях. В сенсорных системах иерархическая организация носит восходящий характер; в нее включаются различные клеточные уровни, по которым информация поступает в высшие центры - от первичных рецепторов к вторичным вставочным нейронам, затем к третичным и т.д. Двигательные системы организованы по принципу нисходящей иерархии, где команды «спускаются» от нервной системы к мышцам: клетки, расположенные, фигурально говоря, «наверху», передают информацию специфическим моторным клеткам спинного мозга, а те в свою очередь - определенным группам мышечных клеток.

Иерархические системы обеспечивают очень точную передачу информации. В результате конвергенции (от лат converge - сходиться к одному центру) - когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня, или дивергенции (от лат. divergo - отклоняюсь, отхожу) - когда контакты устанавливаются с большим числом клеток следующего уровня, информация фильтруется и происходит усиление сигналов. Но, подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Любая инактивация (от лат. in- - приставка, означающая отрицание) любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему. Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении, Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети.

Рис. 33. Нервная сеть из 9 клеток (схема). По периметру - нейроны соединены друг с другом в иерархическую цепь, типичную для сетей сенсорной и двигательной систем. В центре - дивергентная сеть с одним входом (клетки 5, 7, 8, 9), типичная для моноаминэргических систем, в которых один нейрон соединяется с большим числом мишеней. Слева - нейрон локальной сети (6), устанавливающий связи главным образом с клетками из своего ближайшего окружения.

Иерархические системы существуют, конечно, не только в сенсорных или двигательных путях. Тот же тип связей характерен для всех сетей, выполняющих какую-то специфическую функцию, т.е. для систем, которые мы назвали «альянсами» (гл. 1) и более подробно рассмотрим в последующих главах.

Локальные сети. Мы уже говорили о нейронах с короткими аксонами. Если у клетки короткий аксон, настолько короткий, что волнам электрической активности, можно сказать, некуда распространяться, очевидно, что задачи и сфера влияния такого нейрона должны быть весьма ограниченными. Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они, по всей видимости, широко распространены во всех мозговых сетях.

Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или ковергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации.

Дивергентные сети с одним входом. В некоторых нервных сетях имеются скопления или слои нейронов, в которых один нейрон образует выходные связи с очень большим числом других клеток (в таких сетях дивергенция доведена до крайних пределов). Изучение сетей такого типа начато лишь недавно, и единственные места, где они встречаются (насколько нам сейчас известно), - это некоторые части среднего мозга и ствола мозга. Преимущества подобной системы в том, что она может оказывать влияние на множество нейронов сразу и иногда осуществлять связь со всеми иерархическими уровнями, нередко выходя за пределы специфических сенсорных, двигательных и других функциональных альянсов.

Поскольку сфера воздействия таких сетей не ограничена какой-либо системой с определенными функциями, дивергирующие пути этих сетей иногда называют неспецифическими . Однако ввиду того, что такие сети могут влиять на самые различные уровни и функции, они играют большую роль в интеграции многих видов деятельности нервной системы (см. гл. 4). Иными словами, такие системы выступают в роли организаторов и режиссеров массовых мероприятии, руководящих согласованными действиями больших групп людей. Кроме того, медиаторы, используемые в дивергентных системах с одним входом, - это медиаторы с «условным» действием: их эффект зависит от условии, в которых он осуществляется. Подобные воздействия весьма важны и для интегративных механизмов (лат. integratio - восстановление, восполнение, от integer - целый). Однако дивергентные сети такого типа составляют лишь небольшую часть всех нервных сетей.

Изменчивость генетически детерминированных типов сетей

Хотя общая картина связей специфических функциональных сетей удивительно сходна у всех, представителей одного вида, опыт каждой отдельной особи может оказывать дальнейшее влияние на межнейронные связи, вызывая в них индивидуальные изменения и корректируя их функцию.

Представим себе, например, что в мозгу большинства крыс каждый нейрон 3-го уровня в зрительной системе соединен примерно с 50 клетками-мишенями 4-го уровня - сравнительно небольшая дивергенция в системе, характеризующейся в остальном четкой иерархией. Теперь посмотрим, что произойдет, если крыса вырастет в полной темноте? Дефицит входной информации приведет к перестройке зрительной иерархии, так что каждый нейрон 3-го уровня будет контактировать только с 5 или 10 нейронами 4-го уровня вместо обычных 50. Однако, если мы рассмотрим нейроны 4-го уровня в микроскоп, мы убедимся, что у них нет недостатка во входных синапсах. Хотя зрительные нейроны 3-го уровня из-за малого числа связей передают информацию на 4-й уровень в ограниченном объеме, ее дефицит восполняется за счет других работающих сенсорных систем. У нашей крысы в доступном синаптическом пространстве 4-го уровня происходит процесс расширенной переработки слуховой и обонятельной информации.

Рассмотрим другой случай, где тот же эффект проявляется не столь резко. По некоторым данным, интенсивность межнейронной передачи сигналов может влиять на степень развития синаптических контактов между уровнями. Ряд ученых придерживается мнения, что некоторые формы памяти обусловлены изменениями в эффективности таких контактов. Эти изменения могут быть связаны как с микроструктурой (увеличение или уменьшение числа синапсов между клеткой А и клеткой Б), так и с действием медиаторов, участвующих в передаче сигналов (изменение количеств медиатора, синтезируемых и высвобождаемых одной клеткой, или степени реактивности другой клетки) (см. выше рис. 32). Эта тонкая регулировка локальных синаптических функций очень важна при некоторых заболеваниях мозга, о природе которых нам мало что известно (см. гл. 9). Малейшие изменения, происходящие на уровне синаптической активности, могли бы действительно вызвать аномалии поведения, но изменения эти настолько малы, что трудно установить, какова их роль на самом деле.

Нервные клетки не уникальны в своей способности к функциональным изменениям. Во многих других тканях клетки тоже могут изменяться, приспосабливаясь к нагрузке. Если мы возьмем небольшую пробу ткани из четырехглавой мышцы бедра у начинающего тяжелоатлета, а затем у него же после нескольких месяцев усиленной тренировки, то увидим, что каждое мышечное волокно содержит теперь сократимые фибриллы несколько большего размера и число этих фибрилл увеличилось. Слущивающиеся старые клетки вашей кожи и те, что выстилают желудочно-кишечный тракт, ежедневно заменяются новыми; эти клетки, однако, обладают способностью, которой нет у нейронов - они могут делиться. Нейроны генетически запрограммированы на синтез специфических молекул, с помощью которых работают синапсы, а также на образование весьма специфических связей, но не способны к делению. Представьте, что было бы, если бы нервные клетки стали делиться после образования синаптических связей. Как смогла бы при этом клетка распределить свои входные и выходные сигналы, чтобы сохранить прежние связи?

Хотя нейроны и не могут делиться, они обладают большей по сравнению с другими клетками способностью к адаптивной перестройке. Как показали эксперименты, в которых удаляли небольшой участок мозга, а затем в течение нескольких недель наблюдали за реакцией оставшихся частей, некоторые нервные клетки действительно могут регулировать степень своей связи с мишенями. Как правило, при повреждении некоторых синапсов одного нейрона другие, неповрежденные нейроны могут восполнить утраченные звенья цепи путем некоторого ускорения нормального процесса замены синапсов. Если две нервные клетки должны «общаться» более интенсивно, число связей между ними может возрастать за счет добавления новых синапсов при одновременном сохранении старых.

По-видимому, статичность макроскопического строения нервной системы заслонила от нас факт постоянного роста и отмирания связей. Существует даже мнение, что нейроны в нормальном состоянии все время образуют новые связи со своими мишенями. Как только новые синапсы сформировались, старые разрушаются. Такое замещение, вероятно, может компенсировать изнашивание связей в результате их длительной и непрерывной работы.

Хотя испытанное временем представление о том, что наш мозг не может регенерировать утраченные клетки, остается по-прежнему справедливым, исследования последних лет наводят на мысль, что здоровые нейроны обладают значительной структурной пластичностью. Этот более динамичный взгляд на изменчивость мозга открывает широкое поле для исследований; но прежде чем мы начнем понимать, как могут меняться синаптические связи, нам предстоит еще многое узнать.

Из книги Основы психофизиологии автора Александров Юрий

2.7. Нейроны сетчатки Фоторецепторы сетчатки синаптически связаны с биполярными нервными клетками (см. рис. 4.2). При действии света уменьшается выделение медиатора из фоторецептора, что гиперполяризует мембрану биполярной клетки. От неё нервный сигнал передаётся на

Из книги Мозг рассказывает [Что делает нас людьми] автора Рамачандран Вилейанур С.

3.4. Модулирующие нейроны В нервной системе выделена особая группа клеток – модулирующих нейронов, которые сами не вызывают реакции, но регулируют активность других нейронов. Они образуют контакты с другими нейронами типа «синапс на синапсе». Модулирующие нейроны

Из книги Эволюция человека. Книга 2. Обезьяны, нейроны и душа автора Марков Александр Владимирович

Глава 4 НЕЙРОНЫ, КОТОРЫЕ ОПРЕДЕЛИЛИ ЦИВИЛИЗАЦИЮ Даже когда мы одни, как часто с болью и удовольствием думаем мы о том, что другие думают о нас, об их воображаемом одобрении или порицании; все это следует из способности к сопереживанию, основного элемента социальных

Из книги Коннектом. Как мозг делает нас тем, что мы есть автора Сеунг Себастьян

Нейроны соревнуются за право запоминать Часто бывает так, что одни и те же важные сигналы, подлежащие запоминанию, принимаются одновременно очень многими нейронами. Нужно ли им всем участвовать в запоминании? На первый взгляд кажется, что это не слишком рационально. Ведь

Из книги автора

Глава 4 Кругом одни нейроны Нервные импульсы да выработка нейротрансмиттеров – вот и всё. Что же, наше сознание выражается лишь этими физическими процессами, которые идут у нас в черепной коробке? Нейробиологи не сомневаются, что так и есть. Но большинство людей,

Из книги автора

Глава 4. Кругом одни нейроны …позволяет ему делать и научные наблюдения… Quiroga et al., 2005.Даже фото Джулии Робертс… Эксперимент Фрида поражает, потому что был проделан на людях. Результаты поражают меньше, если вы знакомы с работами его предшественников, которые

Энциклопедичный YouTube

    1 / 5

    ✪ Межнейронные химические синапсы

    ✪ Нейроны

    ✪ Тайна мозга. Вторая часть. Реальность во власти нейронов.

    ✪ Как Спорт Стимулирует Рост Нейронов в Мозге?

    ✪ Строение нейрона

    Субтитры

    Теперь мы знаем, как передается нервный импульс. Пусть все начнется с возбуждения дендритов, например этого выроста тела нейрона. Возбуждение означает открытие ионных каналов мембраны. По каналам ионы входят в клетку или же поступают из клетки наружу. Это может приводить к торможению, но в нашем случае ионы действуют электротонически. Они изменяют электрический потенциал на мембране, и этого изменения в районе аксонного холмика может хватить для открытия натриевых ионных каналов. Ионы натрия поступают внутрь клетки, заряд становится положительным. Из-за этого открываются калиевые каналы, но этот положительный заряд активирует следующий натриевый насос. Ионы натрия вновь поступают в клетку, таким образом сигнал передается дальше. Вопрос в том, что происходит в месте соединения нейронов? Мы условились, что все началось с возбуждения дендритов. Как правило, источник возбуждения – другой нейрон. Этот аксон также передаст возбуждение какой-либо другой клетке. Это может быть клетка мышцы или еще одна нервная клетка. Каким образом? Вот терминаль аксона. А здесь может быть дендрит другого нейрона. Это другой нейрон с собственным аксоном. Его дендрит возбуждается. Как это происходит? Как импульс с аксона одного нейрона переходит на дендрит другого? Возможна передача с аксона на аксон, с дендрита на дендрит или с аксона на тело клетки, но чаще всего импульс передается с аксона на дендриты нейрона. Давайте рассмотрим поближе. Нас интересует, что происходит в той части рисунка, которую я обведу в рамку. В рамку попадают терминаль аксона и дендрит следующего нейрона. Итак, вот терминаль аксона. Она выглядит как-то так под увеличением. Это терминаль аксона. Вот ее внутреннее содержимое, а рядом дендрит соседнего нейрона. Так выглядит под увеличением дендрит соседнего нейрона. Вот что внутри первого нейрона. По мембране движется потенциал действия. Наконец где-нибудь на мембране терминали аксона внутриклеточный потенциал становится достаточно положительным, чтобы открыть натриевый канал. До прихода потенциала действия он закрыт. Вот этот канал. Он впускает ионы натрия в клетку. С этого все и начинается. Ионы калия покидают клетку, но, пока сохраняется положительный заряд, он может открывать другие каналы, причем не только натриевые. На конце аксона есть кальциевые каналы. Нарисую розовым. Вот кальциевый канал. Обычно он закрыт и не пропускает двухвалентные ионы кальция. Это потенциалзависимый канал. Как и натриевые каналы, он открывается, когда внутриклеточный потенциал становится достаточно положительным, при этом он впускает в клетку ионы кальция. Двухвалентные ионы кальция поступают в клетку. И этот момент вызывает удивление. Это катионы. Внутри клетки положительный заряд из-за ионов натрия. Как туда попадет кальций? Концентрация кальция создается с помощью ионного насоса. Я уже рассказывал про натрий-калиевый насос, аналогичный насос есть и для ионов кальция. Это белковые молекулы, встроенные в мембрану. Мембрана фосфолипидная. Она состоит из двух слоев фосфолипидов. Вот так. Так больше похоже на настоящую клеточную мембрану. Здесь мембрана тоже двуслойная. Это и так понятно, но уточню на всякий случай. Здесь тоже есть кальциевые насосы, функционирующие аналогично натрий-калиевым насосам. Насос получает молекулу АТФ и ион кальция, отщепляет фосфатную группу от АТФ и изменяет свою конформацию, выталкивая кальций наружу. Насос устроен так, что выкачивает кальций из клетки наружу. Он потребляет энергию АТФ и обеспечивает высокую концентрацию ионов кальция снаружи клетки. В состоянии покоя концентрация кальция снаружи гораздо выше. При поступлении потенциала действия открываются кальциевые каналы, и ионы кальция снаружи поступают внутрь терминали аксона. Там ионы кальция связываются с белками. И теперь давайте разберемся, что вообще происходит в этом месте. Я уже упоминал слово «синапс». Место контакта аксона с дендритом и есть синапс. И есть синапс. Его можно считать местом подключения нейронов друг к другу. Этот нейрон называется пресинаптическим. Запишу. Надо знать термины. Пресинаптический. А это – постсинаптический. Постсинаптический. А пространство между этими аксоном и дендритом называется синаптической щелью. Синаптической щелью. Это очень-очень узкая щель. Сейчас мы говорим о химических синапсах. Обычно, когда говорят о синапсах, имеют в виду химические. Еще есть электрические, но о них пока не будем. Рассматриваем обычный химический синапс. В химическом синапсе это расстояние составляет всего 20 нанометров. Клетка, в среднем, имеет ширину от 10 до 100 микрон. Микрон – это 10 в минус шестой степени метров. Здесь 20 на 10 в минус девятой степени. Это очень узкая щель, если сравнивать ее размер с размером клетки. Внутри терминали аксона пресинаптического нейрона есть пузырьки. Эти пузырьки связаны с мембраной клетки с внутренней стороны. Вот эти пузырьки. У них своя двуслойная липидная мембрана. Пузырьки представляют собой емкости. Их много в этой части клетки. В них находятся молекулы, называемые нейротрансмиттерами. Покажу их зеленым цветом. Нейротрансмиттеры внутри пузырьков. Думаю, это слово вам знакомо. Множество лекарств против депрессии и других проблем с психикой, действуют именно на нейротрансмиттеры. Нейротрансмиттеры Нейротрансмиттеры внутри пузырьков. Когда открываются потенциалзависимые кальциевые каналы, ионы кальция поступают в клетку и связываются с белками, удерживающими пузырьки. Пузырьки удерживаются на пресинаптической мембране, то есть этой части мембраны. Их удерживают белки группы SNARE, Белки этого семейства отвечают за слияние мембран. Вот что это за белки. Ионы кальция связываются с этими белками и изменяют их конформацию так, что они подтягивают пузырьки настолько близко к мембране клетки, что мембраны пузырьков с ней сливаются. Давайте рассмотрим этот процесс подробнее. После того как кальций связался с белками семейства SNARE на мембране клетки, они подтягивают пузырьки ближе к пресинаптической мембране. Вот пузырек. Вот так идет пресинаптическая мембрана. Между собой их соединяют белки семейства SNARE, которые притянули пузырек к мембране и располагаются здесь. Результатом стало слияние мембран. Это приводит к тому, что нейротрансмиттеры из пузырьков попадают в синаптическую щель. Так происходит выброс нейротрансмиттеров в синаптическую щель. Этот процесс называется экзоцитозом. Нейротрансмиттеры покидают цитоплазму пресинаптического нейрона. Вы, наверняка, слышали их названия: серотонин, дофамин, адреналин, который сразу и гормон, и нейротрансмиттер. Норадреналин тоже и гормон, и нейротрансмиттер. Все они вам, наверняка, знакомы. Они выходят в синаптическую щель и связываются с поверхностными структурами мембраны Постсинаптического нейрона. Постсинаптического нейрона. Допустим, они связываются здесь, здесь и здесь с особыми белками на поверхности мембраны, вследствие чего активируются ионные каналы. В этом дендрите возникает возбуждение. Допустим, связывание нейротрансмиттеров с мембраной приводит к открытию натриевых каналов. Натриевые каналы мембраны открываются. Они являются трансмиттер-зависимыми. Вследствие открытия натриевых каналов в клетку поступают ионы натрия, и всё повторяется вновь. В клетке появляется избыток положительных ионов, этот электротонический потенциал распространяется в область аксонного холмика, затем к следующему нейрону, стимулируя его. Так это и происходит. Можно и иначе. Допустим, вместо открытия натриевых каналов, будут открываться калиевые ионные каналы. В таком случае ионы калия будут по градиенту концентрации выходить наружу. Ионы калия покидают цитоплазму. Я покажу их треугольниками. Из-за потери положительно заряженных ионов внутриклеточный положительный потенциал уменьшается, вследствие чего генерация потенциала действия в клетке затрудняется. Надеюсь, это понятно. Мы начали с возбуждения. Генерируется потенциал действия, поступает кальций, содержимое пузырьков поступает в синаптическую щель, открываются натриевые каналы, и нейрон стимулируется. А если открыть калиевые каналы, нейрон будет затормаживаться. Синапсов очень и очень, и очень много. Их триллионы. Считается, что одна только кора мозга содержит от 100 до 500 триллионов синапсов. И это только кора! Каждый нейрон способен образовывать множество синапсов. На этом рисунке синапсы могут быть здесь, здесь и здесь. Сотни и тысячи синапсов на каждой нервной клетке. С одним нейроном, другим, третьим, четвертым. Огромное количество соединений... огромное. Теперь вы видите, как сложно устроено все, что имеет отношение к разуму человека. Надеюсь, это вам пригодится. Subtitles by the Amara.org community

Строение нейронов

Тело клетки

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), ограниченной снаружи мембраной из липидного бислоя . Липиды состоят из гидрофильных головок и гидрофобных хвостов. Липиды располагаются гидрофобными хвостами друг к другу, образуя гидрофобный слой. Этот слой пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: в форме глобул на поверхности, на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм. Тело содержит ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами , аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, который проникает в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) - состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) - вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) - состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии .(Нейроглия , или просто глия (от др.-греч. νεῦρον - волокно, нерв + γλία - клей), - совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в среднем в 10-50 раз больше, чем нейронов.)

В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные (двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. effectus - действие) - вырабатывают и посылают команды к рабочим органам. Вставочные - осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Механизм создания и проведения потенциала действия

В 1937 году Джон Захари Младший определил что гигантский аксон кальмара может быть использован для изучения электрических свойств аксонов. Аксоны кальмара были выбраны из-за того что они намного крупнее человеческих. Если вставить внутрь аксона электрод то можно замерить его мембранный потенциал .

Мембрана аксона содержит в себе потенциал-зависимые ионные каналы . Они позволяют аксону генерировать и проводить по своему телу электрические сигналы называемые потенциалами действия. Эти сигналы образуются и распространяются благодаря электрически заряженным ионам натрия (Na +), калия (K +), хлора (Cl -), кальция (Ca 2+).

Давление,растяжение,химические факторы или изменение мембранного потенциала могут активировать нейрон. Происходит это вследствие открытия ионных каналов которые позволяют ионам пересекать мембрану клетки и соответственно изменять мембранный потенциал.

Тонкие аксоны расходуют меньше энергии и метаболических веществ для проведения потенциала действия, но толстые аксоны позволяют проводить его быстрее.

Для того чтобы проводить потенциалы действия более быстро и менее энергозатратно нейроны могут использовать для покрытия аксонов специальные глиальные клетки называемые олигодендроцитами в ЦНС или шванновскими клетками в переферической нервной системе. Эти клетки покрывают аксоны не полностью, оставляя промежутки на аксонах открытые внеклеточному веществу. В этих промежутках повышенная плотность ионных каналов.Они называются перехватами Ранвье . Через них и проходит потенциал действия посредством электрического поля между промежутками.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях , не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге . Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.

Мультиполярные нейроны - нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе .

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны - нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи , аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. При классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину аксона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов.

По количеству отростков выделяют следующие морфологические типы нейронов :

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона

Вопрос о делении нейронов в настоящее время остаётся дискуссионным. По одной из версий нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. Первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение, которое прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии , микротрубочки и нейрофиламенты, аналогичные имеющимся в теле нейрона.

Микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза , о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Свойства и функции нейронов

Свойства:

  • Наличие трансмембранной разницы потенциалов (до 90 мВ), наружная поверхность электроположительна по отношению к внутренней поверхности.
  • Очень высокая чувствительность к некоторым химическим веществам и электрическому току.
  • Способность к нейросекреции , то есть к синтезу и выделению особых веществ (нейромедиаторов), в окружающую среду или синаптическую щель.
  • Высокое энергопотребление , высокий уровень энергетических процессов, что обуславливает необходимость постоянного притока основных источников энергии - глюкозы и кислорода , необходимых для окисления.

Функции:

  • Приёмная функция (синапсы - точки контакта, от рецепторов и нейронов получаем информацию в виде импульса).
  • Интегративная функция (обработка информации, в результате на выходе нейрона формируется сигнал, несущий информацию всех суммированных сигналов).
  • Проводниковая функция (от нейрона по аксону идет информация в виде электрического тока к синапсу).
  • Передающая функция (нервный импульс, достигнув окончание аксона , который уже входит в структуру синапса, обуславливает выделение медиатора - непосредственного передатчика возбуждения к другому нейрону или исполнительному органу).

См. также

Примечания

  1. Williams R. W. , Herrup K. The control of neuron number. (англ.) // Annual review of neuroscience. - 1988. - Vol. 11. - P. 423-453. - DOI :10.1146/annurev.ne.11.030188.002231 . - PMID 3284447 . [исправить ]
  2. Azevedo F. A. , Carvalho L. R. , Grinberg L. T. , Farfel J. M. , Ferretti R. E. , Leite R. E. , Jacob Filho W. , Lent R. , Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. (англ.) // The Journal of comparative neurology. - 2009. - Vol. 513, no. 5 . - P. 532-541. - DOI :10.1002/cne.21974 . - PMID 19226510 . [исправить ]
  3. Camillo Golgi (1873). “Sulla struttura della sostanza grigia del cervelo” . Gazzetta Medica Italiana. Lombardia . 33 : 244–246.

Основными функциями ЦНС являются:

  • объединение всех частей организма в единое целое и их регуляция;
  • управление состоянием и поведением организма в соответствии с условиями внешней среды и его потребностями.

У человека ведущим отделом ЦНС является кора больших полушарий. Она управляет наиболее сложными функциями в жизни человека – психическими процессами(сознание, мышление, память, речь и др.).

Основными методами изучения функций ЦНС являются методы удаления и раздражения, регистрации электрических явлений, метод условных рефлексов, компьютерной томографии, тепловидения, магнито-ядерного резонанса.

Основными функциями нейронов являются:

  • восприятие внешних раздражений – рецепторная функция,
  • переработка – интегративная функция
  • передача нервных влияний на другие нейроны или рабочие органы – эффекторная функция.

Тело нейрона называется сома, там происходят процессы переработки информации.

Отростки нейронов дендриты служат входами нейрона. Выходом нейрона является аксон, он передает сигнал дальше – другой нервной клетке или рабочему органу) мышце, железе).

Особенно высокой возбудимостью обладает начальная часть аксона и расширение в месте его выхода из тела клетки – аксонный холмик. Именно здесь возникает нервный импульс.

Нейроны подразделяются на три основные типа:

  • афферентные (чувствительные, или центростремительные) передают информацию от рецепторов в ЦНС. Тела этих нейронов расположены вне ЦНС – в спинномозговых узлах и в узлах черепных нервов. Афферентные нейроны имеют длинный отросток — дендрит, который контактирует на периферии с рецептором или сам образует рецептор, а также второй отросток – аксон – входящий через задние рога в спинной мозг.
  • Эфферентные нейроны(двигательные, центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим или из ЦНС к рабочим органам. Для эфферентных нейронов характерны разветвленная сеть коротких отростков – дендритов и один длинный отросток – аксон.
  • Промежуточные (ассоциативные, вставочные, интернейроны) – это более мелкие клетки, осуществляющие связь между афферентныим и эфферентныим нейронами. Они передают нервные влияния горизонально и в вертикальном (выше и ниже) направлениях.

Взаимодействие нейронов между собой и с органами происходит через специальные образования — синапсы (контакт).

Они образуются концевыми разветвлениями нейронов на теле или отростках другого нейрона. Чем больше синапсов на нервной клетке, тем больше она воспринимает различных раздражений и, тем шире сфера влияний на ее деятельность и возможность участия в реакциях организма.

В структуре синапса различают 3 элемента:

1) пресинаптическую мембрану, образованную утолщением мембраны конечной веточки аксона;

2) синаптическую щель

3) постсинаптическую мембрану – утолщение, прилегающей поверхности следующего нейрона.

Передача импульса осуществляется 2 путями: химическим и физическим. Химический путь – при помощи медиатора, который может быть возбуждающим (ацетилхолин, норадреналин) или тормозящим (гамма-аминомасляная кислота)

Первая вызывает деполяризацию постсинаптической мембраны и образование возбуждающего постсинаптического потенциала (ВПСП). Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня (10мВ). Действие медиатора кратковременно(1-2мс), после чего он расщепляется на холин и уксусную кислоту или поглощается обратно. В тормозящих синапсах усиленно выходят на постсинаптическую мембрану ионы калия и увеличивают поляризацию мембраны. При этом регистрируются тормозящий постсинаптический потенциал (ТПСП). В результате клетка оказывается заторможенной. Возбудить ее труднее, чем в исходном состоянии

ПОСМОТРЕТЬ ЕЩЕ:

Главная / Лекции 1 курс / Гистология человека / Вопрос 13. Нервная ткань / 2. Структура нейронов

2. Структура нейронов

Нейроны, или нейроциты, различных отделов нервной системы значительно отличаются друг от друга по функциональному значению и морфологическим особенностям.

В зависимости от функции нейроны делятся на:

    рецепторные (чувствительные, афферентные) - генерируют нервный импульс под влиянием различных воздействий внешней или внутренней среды организма;

    вставочные (ассоциативные) - осуществляют различные связи между нейронами;

    эффекторные (эфферентные, двигательные) - передают возбуждение на ткани рабочих органов, побуждая их к действию.

Характерной чертой для всех зрелых нейронов является наличие у них отростков.

Эти отростки обеспечивают проведение нервного импульса по телу человека из одной его части в другую, подчас весьма удаленную, и потому длина их колеблется в больших пределах - от нескольких микрометров до 1-1,5 м.

По функциональному значению отростки нейронов делятся на два вида. Одни выполняют функцию отведения нервного импульса обычно от тел нейронов и называются аксонами или нейритами.

Нейрит заканчивается концевым аппаратом или на другом нейроне, или на тканях рабочего органана мышцах, железах.

Второй вид отростков нервных клеток называется дендритами. В большинстве случаев они сильно ветвятся, чем и определяется их название. Дендриты проводят импульс к телу нейрона.

По количеству отростков нейроны делятся на три группы:

    униполярные - клетки с одним отростком;

    биполярные - клетки с двумя отростками;

    мультиполярные - клетки, имеющие три и больше отростков.

Мультиполярные клетки наиболее распространены у млекопитающих животных и человека.

Из многих отростков такого нейрона один представлен нейритом, тогда как все остальные являются дендритами.

Биполярные клетки имеют два отростка - нейрит и дендрит. Истинные биполярные клетки в теле человека встречаются редко. К ним относятся часть клеток сетчатки глаза, спирального ганглия внутреннего уха и некоторые другие. Однако по существу своего строения к биполярным клеткам должна быть отнесена большая группа афферентных, так называемых псевдоуниполярных нейронов краниальных и спинальных нервных узлов.

Псевдоуниполярными они называются потому, что нейрит и дендрит этих клеток начинается с общего выроста тела, создающего впечатление одного отростка, с последующим Т-образным делением его.

Истинных униполярных клеток, то есть клеток с одним отростком - нейритом, в теле человека нет.

Нейроны человека в подавляющем большинстве содержат одно ядро, расположенное в центре, реже - эксцентрично.

Двуядерные нейроны и тем более многоядерные встречаются крайне редко, например: нейроны в предстательной железе и шейке матки. Форма ядер нейронов округлая. В соответствии с высокой активностью метаболизма хроматин в их ядрах диспергирован. В ядре имеется 1, а иногда 2 и 3 крупных ядрышка.

В соответствии с высокой специфичностью функциональной активности нейронов они имеют специализированную плазмолемму, их цитоплазма богата органеллами.

В цитоплазме хорошо развита эндоплазматическая сеть, рибосомы, митохондрии, комплекс Гольджи, лизосомы, нейротубулы и нейрофиламенты.

Плазмолемма нейронов, кроме функции, типичной для цитолеммы любой клетки, характеризуется способностью проводить возбуждение. Сущность этого процесса сводится к быстрому перемещению локальной деполяризации плазмолеммы по ее дендритам к перикариону и аксону.

Обилие гранулярной эндоплазматической сети в нейроцитах соответствует высокому уровню синтетических процессов в цитоплазме и, в частности, синтеза белков, необходимых для подержания массы их перикарионов и отростков.

Для аксонов, не имеющих органелл, синтезирующих белок, характерен постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1-3 мм в сутки. Это медленный ток, несущий белки, в частности ферменты, необходимые для синтеза медиаторов в окончаниях аксонов.

Кроме того, существует быстрый ток (5-10 мм в час), транспортирующий главным образом компоненты, необходимые для синаптической функции. Помимо тока веществ от перикариона к терминалям аксонов и дендритов наблюдается и обратный (ретроградный) ток, посредством которого ряд компонентов цитоплазмы возвращается из окончаний в тело клетки.

В транспорте веществ по отросткам нейроцитов участвуют эндоплазматическая сеть, ограниченные мембраной пузырьки и гранулы, микротрубочки и актиномиозиновая система цитоскелета.

Комплекс Гольджи в нервных клетках определяется как скопление различных по форме колечек, извитых нитей, зернышек.

Клеточный центр чаще располагается между ядром и дендритами. Митохондрии расположены как в теле нейрона, так и во всех отростках. Особенно богата митохондриями цитоплазма нейроцитов в концевых аппаратах отростков, в частности в области синапсов.

Нейрофибриллы

При импрегнации нервной ткани серебром в цитоплазме нейронов выявляются нейрофибриллы, образующие плотную сеть в перикарионе клетки и ориентированные параллельно в составе дендритов и аксонов, включая их тончайшие концевые ветвления.

Методом электронной микроскопии установлено, что нейрофибриллам соответствуют пучки нейрофиламентов диаметром 6-10 нм и нейротубул (нейротрубочек) диаметром 20-30 нм, расположенных в перикарионе и дендритах между хроматофильными глыбками и ориентированных параллельно аксону.

Секреторные нейроны

Способность синтезировать и секретировать биологически активные вещества, в частности медиаторы, свойственная всем нейроцитам.

Однако существуют нейроциты, специализированные преимущественно для выполнения этой функции - секреторные нейроны, например клетки нейросекреторных ядер гипоталамической области головного мозга. Секреторные нейроны имеют ряд специфических морфологических признаков:

    секреторные нейроны - это крупные нейроны;

    в цитоплазме нейронов и в аксонах находятся различной величины гранулы секрета - нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды;

    многие секреторные нейроны имеют ядра неправильной формы, что свидетельствует об их высокой функциональной активности.

Структура и функции нейронов

Нейроны являются возбудимыми клетками нервной системы. В отличие от глиальных клеток они способны возбуждаться (генерировать потенциалы действия) и проводить возбуждение. Нейроны высокоспециализированные клетки и в течении жизни не делятся.

Каждый нейрон имеет расширенную центральную часть: тело – сому и отростки.

Сома нейрона имеет ядро и клеточные органоиды. Основной функцией сомы является регуляция обмена веществ.

Число отростков у нейронов различно, но по строению и выполняемой функции их делят на два типа. Одни – длинный отросток, проводящий возбуждение от тела клетки к другим нейронам или к периферическим органам, отходит от сомы в месте, которое называется аксонным холмиком .

Здесь генерируется потенциал действия – специфический электрический ответ возбудившейся нервной клетки. По ходу аксона могут образовываться его ответвления – коллатерали.

Часть аксонов центральной нервной системы покрывается специальным электроизолирующим веществом – миелином.

Миелинизацию аксонов осуществляют клетки глии. В центральной нервной системе эту роль выполняют олигодендроциты, в периферической – Шванновские клетки , являющиеся разновидностью олигодендроцитов.

Аксон не сплошь покрыт миелином. В миелиновой оболочке существуют регулярные перерывы – перехваты Ранвье . Миелиновая оболочка выполняет изолирующую, опорную, барьерную и, возможно, трофическую и транспортную функции.

Другим типом отростков нервных клеток являются дендриты – короткие, сильно ветвящиеся отростки (от слова dendro – дерево, ветвь).

Нервная клетка несет на себе от одного до множества дендритов. Основной функцией дендритов является сбор информации от множества других нейронов. В ЦНС тела нейронов сосредоточены в сером веществе больших полушарий головного мозга, подкорковых ядрах, мозговом стволе, мозжечке и спинном мозге. Миелинизированные волокна образуют белое вещество различных отделов спинного и головного мозга.

Существует несколько классификаций нейронов, основанных на разных признаках: по форме сомы, количеству отростков, функциям и эффектам, которые нейрон оказывает на другие клетки.

В зависимости от формы сомы различают зернистые (ганглиозные) нейроны, у которых сома имеет округлую форму; пирамидные нейроны разных размеров – большие и малые пирамиды; звездчатые нейроны; веретенообразные нейроны.

По количеству отростков выделяют униполярные нейроны, имеющие один отросток, отходящий от сомы клеток; псевдоуниполярные нейроны (такие нейроны имеют Т-образный ветвящийся отросток); биполярные нейроны, имеющие один дендрит и один аксон, и мультиполярные нейроны, которые имеют множество дендритов и один аксон.

По выполняемым функциям нейроны бывают: афферентные (рецепторные или чувствительные), эфферентные (или эффекторные) и вставочные (контактные или промежуточные).

Афферентные нейроны — сенсорные (псевдоуниполярные), их сомы расположены вне центральной нервной системы в ганглиях (спинномозговых или черепно-мозговых). Эти нейроны имеют один дендрит, который подходит к рецепторам (кожи, мышц, сухожилий и т.д.). Эфферентные нейроны регулируют работу эффекторов (мышц, желез и т.д.). Это мультиполярные нейроны. Короткие, обильно ветвящиеся дендриты воспринимают импульсы от других нейронов, а длинные аксоны выходят за пределы центральной нервной системы и в составе нерва идут к эффекторам (рабочим органам), например, к скелетной мышце.

И, наконец, вставочные нейроны , которых огромное количество и они не относятся ни к первому, ни ко второму типу нейронов, составляют основную массу мозга. Они осуществляют связь между афферентными и эфферентными нейронами, перерабатывают информацию, поступающие от рецепторов в центральную нервную систему.

В основном это мультиполярные нейроны звездчатой формы.среди вставочных нейронов различают нейроны с длинными и короткими аксонами.

Предыдущая12345678910111213141516Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Классификация нейронов

Существует несколько типов классификации нейронов.

По строению нейроны делят на три типа: униполярные, биполярные и мультиполярные.

Истинно униполярные нейроны находятся только в ядре тройничного нерва.

Эти нейроны обеспечивают проприоцептивную чувствительность жевательных мышц. Остальные униполярные нейроны называют псевдоуниполярными, поскольку на самом деле они имеют два отростка, один идет с периферии нервной системы, а другой – в структуры центральной нервной системы.

Оба отростка сливаются вблизи тела нервной клетки в один отросток. Такие псевдоуниполярные нейроны располагаются в сенсорных узлах: спинальных, тройничном и др. Они обеспечивают восприятие тактильной, болевой, температурной, проприоцептивной, барорецептивной, вибрационной чувствительности. Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Дендрит биполярного нейрона связан с рецептором, а аксон – с нейроном следующего уровня соответствующей сенсорной системы.

Мультиполярные нейроны имеют несколько дендритов и один аксон; все они являются разновидностями веретенообразных, звездчатых, корзинчатых и пирамидных клеток. Перечисленные типы нейронов можно видеть на слайдах.

В зависимости от природы синтезируемого медиатора нейроны делятся на холинергические, норадреналинергические, ГАМК-ергические, пептидергические, дофамиергические, серотонинергические и др.

Наибольшее число нейронов имеет, по-видимому, ГАМК-ергическую природу – до 30%, холинергические системы объединяют до 10 – 15%.

По чувствительности к действию раздражителей нейроны делят на моно- , би- и полисенсорные . Моносенсорные нейроны располагаются чаще в проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, большая часть нейронов первичной зоны зрительной области коры реагируют только на световое раздражение сетчатки глаза.

Моносенсорные нейроны функционально подразделяются по их чувствительности к разным качествам своего раздражителя. Так, отдельные нейроны слуховой зоны коры большего мозга могут реагировать на предъявления тона частотой 1000 Гц и не реагировать на тоны другой частоты, такие нейроны называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более – полимодальными.

Бисенсорные нейроны обычно располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Наример, нейроны вторичной зоны зрительной области коры реагируют на зрительные и слуховые стимулы.

Полисенсорные нейроны чаще всего располагаются в ассоциативных зонах мозга; они способны реагировать на раздражение слуховой, кожной, зрительной и других сенсорных систем.

По типу импульсации нейроны делятся на фоновоактивные , то есть возбуждающиеся без действия раздражителя и молчащие , которые проявляют импульсную активность только в ответ на раздражение.

Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга; их число увеличивается в состоянии бодрствования. Имеется несколько типов импульсации фоновоактивных нейронов. Непрерывно–аритмичный – если нейрон генерирует импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов. Такие нейроны обеспечивают тонус нервных центров. Пачечный тип импульсации – нейроны такого типа генерируют группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка импульсов.

Межимпульсные интервалы в пачке равны от 1 до 3 мс, а период молчания составляет от 15 до 120 мс. Групповой тип активности характеризуется нерегулярным появлением группы импульсов с межимпульсным интервалом от 3 до 30 мс, после чего наступает период молчания.

Фоновоактивные нейроны делятся на возбуждающиеся и тормозящиеся, которые, соответственно, увеличивают или уменьшают частоту разряда в ответ на раздражение.

Предыдущая123456789101112Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Классификация нейронов по функциям

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков.

Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) - состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний.

Нейрофиламенты (Д = 10 нм) - вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) - состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии.

В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные(двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг.

Эффекторные (от лат.

эффектус - действие) - вырабатывают и посылают команды к рабочим органам. Вставочные - осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Классификация нейронов по функциям

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Классификация нейронов по функциям:

1. Афферентный (чувствительный, сенсорный или рецепторный) нейрон, к нимотносятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные (эффекторный, двигательный или моторный), к ним относятсяконечные нейроны — ультиматные и предпоследние – неультиматные.

3. Ассоциативные клетки (вставочные или интернейроны) — эта группаосуществляет связь между эфферентными и афферентными, их делят накомисуральные и проекционные (головной мозг).

а) Классификация по морфологии.

Нервные клетки бывают звездчатые иверетенообразные, пирамидные, зернистые, грушевидные и т.д. ок. 60 форм.

б) Классификация по характеру и количеству отростков. Делятся науниполярные, биполярные и Мультиполярные.

б)1. Униполярные — это клетки с одним отростком, делятся на: б.1.1. Истинные, встречаются только у беспозвоночных б.1.2. Ложные (псевдоуниполярные) находятся в спинномозговых узлах, в теле человека и всех высшихпозвоночных.

б)2. Биполярные (с двумя отростками), у них продолговатаяформа.

Один – центральный, второй – периферический.

б)3. Мультиполярные (СО МНОЖЕСТВОМ ОТРОСТКОВ)

Если у биполярных и мультиполярных клеток отростки невозможно дифференцировать, то их называют гетерополярными.

В каждом нейроне различают следующие участки:

а) Тело (сома или перикарион) именно эта часть клетки содержит цитоплазму и ядро.

Сома может лежать прямо по ходу нейрита, как у биполярных клеток или присоединяться к отросткам в стороне, а т.ж. сома может лежать терминально, т.е. ближе к дендритической зоне, а у мультиполярных сома расположена между аксоном и дендритами по центру.

б) Дендритическая зона (периферическая и осевая зона аксона).

Это рецепторная зона, она обеспечивает конвергентную систему сбораинформации через синапсы от других нейронов или из окружающей среды.

Морфологическая характеристика дендритической зоны

Многочисленные, относительно короткие, суживающиеся в периферическом направлении разветвления, отходят под тупым углом в проксимальной (ближе к телу) части дендрита.

Сома располагается вблизи или внутри дендритического разветвления. На дендритах есть шипиковый аппарат. Способ разветвления у различных типов нейронов — сравнительно постоянный.

По структуре дендриты схожи с сомой. Направление движения импульса — целлюлопитально (к телу клетки).

Дендриты отходят от любой части сомы, отход дендрита представляетсобой коническое возвышение, которое продолжается в главный стволовойдендрит, а уже он подразделяется на перифиричные, вторичные, тройничныеветви. Толщина стволовых дендритов у разных нейронов различна.

У пирамидных клеток коры головного мозга главный дендритназывается апикальным, а все остальные – базальными.

Шипиковый аппарат состоит из двух, трех гладких цистерн (ЭПС), по формемогут быть булавообразные, шапочкоподобные или тонкие (в виде нити).

Длина шипиков ок. 2-3 мкм, чаще всего они расположены в утолщенном конусе, у разных клеток количество шипиков различно, больше всего их в клетках

Пуркинье, в пирамидных клетках коры головного мозга, в клетках хвостатогоядра головного мозга.

На площади равной 102 мкм, у дендритов клеток

Пуркинье находиться 15 шипиков. Всего в одной клетке Пуркинье 40000шипиков, а их суммарная поверхность 220000 шипиков. Шипики предположительно увеличивают контактную поверхность.

Нейроны обладают уникальными способностями:

  • приходить в состояние возбуждения (деятельное состояние) под влиянием физического или химического раздражения;
  • принимать, кодировать (шифровать), обрабатывать информацию о состоянии внешней среды и внутренней среды организма;
  • передавать информацию в виде электрических импульсов и другими способами другим нервным клеткам или органам (мышцам, железам, сосудам и т.д.), устанавливая между ними связь;
  • копию информации хранить в своей памяти.

    Способность нервных клеток хранить информацию позволяет мозгу человека (лобные доли) хранить в памяти все, что происходило с организмом за всю его жизнь, а объем памяти таков, что в ней вмещается вся генетическая память предков.

Нервные клетки имеют различные формы и размеры (от 5 до 150 микрон). V каждого нейрона имеются короткие (дендриты) и один длинный (аксон) отростки.

Нервная система контролирует, координирует и регулирует согласованную работу всех систем органов, поддержание постоянства состава его внутренней среды (благодаря этому организм человека функционирует как единое целое). При участии нервной системы осуществляется связь организма с внешней средой.

Нервная ткань

Нервная система образована нервной тканью , которая состоит из нервных клеток - нейронов - и мелких клеток-спутников (глиальных клеток ), которых примерно в \(10\) раз больше, чем нейронов.

Нейроны обеспечивают основные функции нервной системы: передачу, переработку и хранение информации. Нервные импульсы имеют электрическую природу и распространяются по отросткам нейронов.

Клетки-спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток.

Строение нейрона

Нейрон - основная структурная и функциональная единица нервной системы.

Структурно-функциональной единицей нервной системы является нервная клетка - нейрон . Его основными свойствами являются возбудимость и проводимость.

Нейрон состоит из тела и отростков .

Короткие, сильно ветвящиеся отростки - дендриты , по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько.

Каждая нервная клетка имеет один длинный отросток - аксон , по которому импульсы направляются от тела клетки . Длина аксона может достигать нескольких десятков сантиметров. Объединяясь в пучки, аксоны образуют нервы .

Длинные отростки нервной клетки (аксоны) покрыты миелиновой оболочкой . Скопления таких отростков, покрытых миелином (жироподобным веществом белого цвета), в центральной нервной системе образуют белое вещество головного и спинного мозга.

Короткие отростки (дендриты) и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга.

Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона. Место контакта одного нейрона с другим называется синапсом . На теле одного нейрона насчитывается \(1200\)–\(1800\) синапсов.

Синапс - пространство между соседними клетками, в котором осуществляется химическая передача нервного импульса от одного нейрона к другому.

Каждый синапс состоит из трёх отделов :

  1. мембраны, образованной нервным окончанием (пресинаптическая мембрана );
  2. мембраны тела клетки (постсинаптическая мембрана );
  3. синаптической щели между этими мембранами

В пресинаптической части синапса содержится биологически активное вещество (медиатор ), которое обеспечивает передачу нервного импульса с одного нейрона на другой. Под влиянием нервного импульса медиатор выходит в синаптическую щель, действует на постсинаптическую мембрану и вызывает возбуждение в теле клетки следующего нейрона. Так через синапс передаётся возбуждение от одного нейрона к другому.

Распространение возбуждения связано с таким свойством нервной ткани, как проводимость .

Типы нейронов

Нейроны различаются по форме

В зависимости от выполняемой функции выделяют следующие типы нейронов:

  • нейроны, передающие сигналы от органов чувств в ЦНС (спинной и головной мозг), называют чувствительными . Тела таких нейронов располагаются вне ЦНС, в нервных узлах (ганглиях). Нервный узел представляет собой скопление тел нервных клеток за пределами центральной нервной системы.
  • Нейроны, передающие импульсы от спинного и головного мозга к мышцам и внутренним органам называют двигательными . Они обеспечивают передачу импульсов от ЦНС к рабочим органам.
  • Связь между чувствительными и двигательными нейронами осуществляется с помощью вставочных нейронов через синаптические контакты в спинном и головном мозге. Вставочные нейроны лежат в пределах ЦНС (т. е. тела и отростки этих нейронов не выходят за пределы мозга).

Скопление нейронов в центральной нервной системе называется ядром (ядра головного, спинного мозга).

Спинной и головной мозг связаны со всеми органами нервами .

Нервы - покрытые оболочкой структуры, состоящие из пучков нервных волокон, образованных в основном аксонами нейронов и клетками нейроглии.

Нервы обеспечивают связь центральной нервной системы с органами, сосудами и кожным покровом.

В нашем мозгу 100 млрд. нейронов – это больше, чем звезд в нашей галактике! Каждая клетка в свою очередь может дать 200 тыс. ответвлений.

Таким образом, мозг имеет огромные ресурсы, чтоб хранить воспоминания объемом примерно за 3 млн. лет. Учёные называют это «волшебными деревьями разума», потому что нервные клетки мозга похожи на ветвистые деревья.

Мысленные электрические импульсы между нейронами передаются через синапсы – зоны контакта между нейронами. Средний нейрон человеческого мозга имеет от 1000 до 10000 синапсов или контактов с соседними нейронами. Синапсы имеют небольшую щель, которую должен преодолеть импульс.

Когда мы учимся, мы меняем работу мозга, прокладывая новые пути для мысленных электрических импульсов. При этом электрический сигнал должен «перепрыгнуть» через щель синапса для образования новых связей между нервными клетками. Эту дорогу ему труднее всего пройти первый раз, но по мере обучения, когда сигнал преодолевает синапс снова и снова, связи становятся все «шире и прочнее», растет число синапсов и связей между нейронами. Образуются новые нейронные микросети, в которые и «встраиваются» новые знания: убеждения, привычки, модели поведения. И тогда мы, наконец, чему-то научились. Эту способность мозга называют нейропластичностью.

Именно число микросетей в мозгу, а не его объем или масса, имеют определяющее влияние на то, что мы называем интеллект.

Попутно хочу заметить, что в раннем детстве, когда проходит самый интенсивный период обучения, для ребенка крайне важна богатая и разнообразная развивающая среда.

Нейропластика – это одно из самых удивительных открытий последних лет. Раньше считалось, что нервные клетки не восстанавливаются. Но в 1998 году группа американских ученых доказала, что нейрогенез происходит не только до 13-14 лет, но и всю нашу жизнь, и что у взрослых людей тоже могут появляться новые нервные клетки.

Они установили, что причиной уменьшения наших умственных способностей с возрастом является не отмирание нервных клеток, а истощение дендритов, - отростков нервных клеток, через которые проходят импульсы от нейрона к нейрону. Если дендриты постоянно не стимулировать, то они атрофируются, теряя способность к проводимости, словно мышцы без физической нагрузки.

Одни и те же ежедневные действия формируют шаблонное поведение - наши привычки, - при этом используются и укрепляются одни и те же нейронные связи. Так происходит встраивание нашего «автопилота», но при этом страдает гибкость нашего мышления.

Наш мозг нуждается в упражнениях. Необходимо каждый день менять рутинные и шаблонные действия на новые, непривычные вам, которые задействуют несколько органов чувств ; выполнять обычные действия необычным способом, решать новые проекты, стараясь уходить от «автопилота» привычных схем. Привычка ослабляет способности мозга. Для продуктивной работы ему нужны новые впечатления, новые задачи, новая информация, – одним словом – перемены.

До 1998 года считалось, что рост дендритов происходит только в раннем возрасте, но исследования доказали, что и у взрослых людей нейроны способны выращивать дендриты для компенсации потерянных старых. Доказано, что нейронные сети способны меняться в течение всей жизни человека и наш мозг хранит в себе огромные ресурсы нейропластичности – способности менять свою структуру.

Известно, что наш мозг состоит из эмбриональной ткани, то есть той, из которой состоит эмбрион. Поэтому он всегда открыт для развития, обучения и для будущего.

Мозг способен простой мыслью, воображением, визуализацией изменять структуру и функцию серого вещества. Ученые убеждаются, что это может происходить даже без внешних воздействий. Мозг может меняться под властью тех мыслей, которыми он наполнен, ум в силах влиять на мозг. Наш мозг создан природой с расчетом на обучение и подобные изменения.

В Библии сказано: «Преобразуйтесь обновлением ума вашего».

Все вышесказанное подводит нас к пониманию того, что для реального достижения целей требуется фундаментальное изменение способа работы вашего мозга – преодоление генетической программы и прежнего воспитания со всеми многолетними убеждениями. Вы не просто должны лелеять мысли в своем воображении, которые присутствуют не дольше новогоднего «все, больше не пью», а переучивать свой мозг, создавая новые нейронные структуры. Нейрологи говорят: «Нейроны, которые вместе сходятся, вместе и водятся». Новые нейронные структуры вашего мозга будут создавать совершенно новые сети, «блок-схемы», приспособленные для решения новых задач.

«Ваша задача - перекинуть мост через пропасть между вами и желаемыми це­лями».

Эрл Найтингейл

Метафорически этот процесс можно иллюстрировать на следующем примере. Представьте, что ваш мозг с его ограничивающими убеждениями – это стакан с мутной водой. Если бы вы сразу выплеснули грязную воду, помыли стакан и набрали чистую – это был бы шок для всего организма. Но, подставив стакан по струю чистой воды, вы постепенно замените мутную.

Точно так же для обучения мозга новому образу мыслей нет нужды резко «стирать» старый. Необходимо постепенно «заливать» подсознание новыми позитивными убеждениями, привычками и качествами, которые в свою очередь будут генерировать эффективные решения, приводя вас к нужным результатам.

Для поддержания высокой работоспособности нашему мозгу, как и телу, необходима «физзарядка». Профессор нейробиологии Лоуренс Кац (США) разработал комплекс упражнений для мозга – нейробику, позволяющую нам иметь хорошую «ментальную» форму.

Упражнения нейробики обязательно используют все пять чувств человека - причем, необычным образом и в разных комбинациях. Это помогает создавать в мозгу новые нейронные связи. При этом наш мозг начинает вырабатывать нейротропин, вещество, способствующее росту новых нервных клеток и связей между ними. Ваша задача -каждый день менять привычные и шаблонные действия на новые, непривычные.

Цель упражнений нейробики - стимуляция мозга. Заниматься нейробикой просто - нужно сделать так, чтобы в процессе привычной деятельности по-новому были задействованы ваши органы чувств.

Например:

  • проснувшись утром, примите душ закрытыми глазами,
  • почистите зубы другой рукой,
  • постарайтесь одеться на ощупь,
  • отправьтесь на работу новым маршрутом,
  • сделайте привычные покупки в новом месте и еще много чего.

Это увлекательная и полезная игра.

Нейробика полезна абсолютно всем. Детям она поможет лучше концентрироваться и усваивать новые знания, а взрослым - поддерживать свой головной мозг в отличной форме и избежать ухудшения памяти.

Главный принцип нейробики - постоянно изменять простые шаблонные действия.

Давайте задание своему мозгу решать привычные задачи непривычным для него образом, и постепенно он отблагодарит вас прекрасной работоспособностью.

Итак, мы способны обучать свой мозг новому образу мышления. Начав менять свои шаблоны и убеждения, вы увидите, что меняясь изнутри, вы начнете менять все вокруг, словно порождая эффект расходящихся волн.

Помните: внешний Успех всегда есть производная от Успеха внутреннего.

Иисус учил: «Как вы мыслите, так вам и будет».

Так создается новая «Матрица» вашего мышления, которая ведет вас к Переменам.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top