Строение и функции эндоплазматической сети, комплекса гольджи. Эндоплазматическая сеть

Строение и функции эндоплазматической сети, комплекса гольджи. Эндоплазматическая сеть

Важной функцией ПАК является функция индивидуализации . Она проявляется в различии клеток по химическому строению компонентов гликокаликса. Эти различия могут касаться структуры надмембранных доменов нескольких интегральных и полуинтегральных белков. Большое значение в реализации функции индивидуализации имеют различия по углеводным компонентам гликокаликса (олигосахариды гликолипидов и гликопротеинов ПАК). Эти различия могут касаться гликокаликса одинаковых клеток разных организмов. Различный состав гликокаликса характерен и для различных клеток одного многоклеточного организма. Молекулы, ответственные за функцию индивидуализации, получили название антигенов . Структура антигенов контролируется определенными генами. Каждый ген может определять несколько вариантов одного антигена. Организм имеет большое количество разных систем антигенов. В результате он имеет уникальный набор вариантов различных антигенов. В этом проявляется функция индивидуализации ПАК.

Для ПАК характерна локомоторная функция. Она реализуется в виде передвижения отдельных участков ПАК или всей клетки. Эта функция осуществляется на основе субмембранного опорно-сократительный аппарата. С помощью взаимного скольжения и полимеризации – деполяризации микрофибрилл и микротрубочек в определенных районах ПАК образуются выпячивания участков плазмолеммы. На этой основе происходит эндоцитоз. Согласованное перемещение многих участков ПАК приводит к движению всей клетки. Высокой подвижностью обладают клетки иммунной системы макрофаги. Они способны к фагоцитозу чужеродных веществ и даже целых клеток и передвигаются практически по всему организму. Нарушение локомоторной функции макрофагов вызывает повышенную чувствительность организма к возбудителям инфекционных заболеваний. Это обусловлено участием макрофагов в иммунных реакциях.

Кроме рассмотренных универсальных функций ПАК эта субсистема клетки может выполнять и другие, специализированные функции.

6. Строение и функции эпс.

Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему плоских мембранных цистерн и мембранных трубочек. Мембранные цистерны и трубочки соединяются между собой и образуют мембранную структуру с общим содержимым. Это позволяет изолировать определенные участки цитоплазмы от основной ниалоплазмы и реализовать в них некоторые специфические клеточные функции. В результате происходит функциональная дифференцировка различных зон цитоплазмы. Строение мембран ЭПС соответствует жидкостно-мозаичной модели. Морфологически различают 2 вида ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Гладкая ЭПС представлена системой мембранных трубочек. Шероховатая ЭПС является системой мембранных цистерн. На наружной стороне мембран шероховатой ЭПС находятся рибосомы . Оба вида ЭПС находятся в структурной зависимости – мембраны одного вида ЭПС могут переходить в мембраны другого вида.

Функции эндоплазматической сети:

    Гранулярная ЭПС участвует в синтезе белков, в каналах образуются сложные молекулы белков.

    Гладкая ЭПС участвует в синтезе липидов, углеводов.

    Транспорт органических веществ в клетку (по каналам ЭПС).

    Делит клетку на секции, – в которых могут одновременно идти разные химические реакции и физиологические процессы.

Гладкая ЭПС является полифункциональной. В ее мембране имеются белки-0ферменты, которые катализируют реакции синтеза мембранных липидов. В гладкой ЭПС синтезируются и некоторые не мембранные липиды (стероидные гормоны). В состав мембраны этого типа ЭПС включены переносчики Са 2+ . Они транспортируют кальций по градиенту концентрации (пассивный транспорт). При пассивном транспорте происходит синтез АТФ. С их помощью в гладкой ЭПС регулируется концентрация Са 2+ в гиалоплазме. Этот параметр важен для регуляции работы микротрубочек и микрофибрилл. В мышечных клетках гладкая ЭПС регулирует сокращение мускулатуры. В ЭПС происходит детоксикация многих вредных для клетке веществ (лекарственные препараты). Гладкая ЭПС может образовывать мембранные пузырьки, или микротельца. Такие пузырьки осуществляют специфические окислительные реакции изолированно от ЭПС.

Главной функцией шероховатой ЭПС является синтез белков. Это определяется наличием на мембранах рибосом. В мембране шероховатой ЭПС имеются специальные белки рибофорины . Рибосомы взаимодействуют с рибофоринами и фиксируются на мембране в определенной ориентации. Все белки синтезирующиеся в ЭПС имеют концевой сигнальный фрагмент. На рибосомах шероховатой ЭПС идет синтез белков.

В цистернах шероховатой ЭПС происходит посттрансляционная модификация белков.

7. Комплекс Гольджи и лизосомы. Строение и функции .

Комплекс Гольджи является универсальным мембранным органоидом эукариотических клеток. Структурная часть комплекса Гольджи представлена системой мембранных цистерн , образуя стопку цистерн. Эту стопку называют диктиосомой. От них отходят мембранные трубочки и мембранные пузырьки.

Строение мембран комплекса Гольджи соответствует жидкостно-мозаичной структуре. Мембраны различных полюсов разделяются по количеству гликолипидов и гликопротеинов. На проксимальном полюсе происходит образование новых цистерн диктиосомы. От участков гладкой ЭПС отрываются мелкие мембранные пузырьки и передвигаются в зону проксимального полюса. Здесь они сливаются и образуют более крупную цистерну. В результате этого процесса в цистерны комплекса Гольджи могут транспортироваться вещества, которые синтезируются в ЭПС. От боковых поверхностей дистального полюса отрываются пузырьки, которые участвуют в энджоцитозе.

Комплекс Гольджи выполняет 3 общих клеточных функции:

    Накопительную

    Секреторную

    Агрегационную

В цистернах комплекса Гольджи протекают определенные биохимические процессы. В результате осуществляется химическая модификация компонентов мембраны цистерн комплекса Гольджи и молекул внутри этих цистерн. В мембранах цистерн проксимального полюса имеются ферменты, которые осуществляют синтез углеводов (полисахаридов) и их присоединение к липидам и белкам, т.е. происходит гликозилирование. Наличие этого, или другого углеводного компонента у гликозилированных белков определяет их судьбу. В зависимости от этого белки попадают в разные районы клетки и секретируются. Гликозилирование является одним из этапов созревания секрета. Кроме того, белки в цистернах комплекса Гольджи могут фосфорилироваться и ацетилироваться. В комплексе Гольджи могут синтезироваться свободные полисахариды. Часть их подвергается сульфатированию с образованием мукополисахаридов (гликозаминогликанов). Еще одним вариантом созревания секрета является конденсация белков. Этот процесс заключается в удалении молекул воды из секреторных гранул, что приводит к уплотнению секрета.

Так же универсальность комплекса Гольджи в эукариотичсеких клетках является его участие в формировании лизосом.

Лизосомы являются мембранными органоидами клетки. Внутри лизосом находится лизосомальный матрикс из мукополисахаридов и белки ферменты.

Мембрана лизосом производной мембраны ЭПС, но имеет свои особенности. Это касается структуры билипидного слоя. В мембране лизосом он не сплошной (не непрерывный), а включает липидные мицеллы. Эти мицеллы составляют до 25% поверхности лизосомальной мембраны. Такое строение называется пластинчато-мицеллярное. В мембране лизосом локализуются разнообразные белки. К ним относятся ферменты: гидролазы, фосфолипазы; и низкомолекулярные белки. Гидролазы являются специфическими для лизосом ферментами. Они катализируют реакции гидролиза (расщепления) высокомолекулярных веществ.

Функции лизосом:

    Переваривание частиц при фагоцитозе и пиноцитозе.

    Защитная при фагоцитозе

    Аутофагия

    Аутолиз в онтогенезе.

Основной функцией лизосом является участие в гетерофаготических циклах (гетерофагия) и в аутофаготических циклах (аутофагия). При гетерофагии расщепляются чужеродные для клетки вещества. Аутофагия связана с расщеплением собственных веществ клетки. Обычный вариант гетерофагии начинается с эндоцитоза и образования эндоцитарного пузырька. В этом случае пузырек называют гетерофагосомой. В другом варианте гетерофагии отсутствует этап эндоцитоза чужеродных веществ. В этом случае первичная лизосома сразу включается в экзоцитоз. В результате гидролазы матрикса оказываются в гликокаликсе клетки и способны расщеплять внеклеточные чужеродные вещества.

Животных и человека. Функции этой составляющей части клетки разнообразны и связаны в основном с синтезом, модификацией и транспортом

Впервые эндоплазматическая сеть была обнаружена в 1945 году. Американский ученый К. Портер разглядел ее с помощью одного из первых электрических микроскопов. С этого времени началось ее активное исследование.

В клетке есть две разновидности этой органеллы:

  • Гранулярная, или шероховатая эндоплазматическая сеть (покрыта множеством рибосом).
  • Агранулярная, или гладкая эндоплазматическая сеть.

Каждый тип ретикулума имеет некоторые особенности и выполняет совершенно разные функции. Давайте рассмотрим их более подробно.

Гранулярная эндоплазматическая сеть: строение . Данная органелла представляет собой системы цистерн, пузырьков и канальцев. Стенки ее состоят из билипидной мембраны. Ширина полости может колебаться от 20 нм до нескольких микрометров — здесь все зависит от секреторной активности клетки.

У мало специализированных клеток, которые характеризируются низким уровнем метаболизма, ЭПС представлена всего лишь несколькими разрозненными цистернами. Внутри клетки, которая активно синтезирует белок, эндоплазматическая сеть состоит из множества цистерн и разветвленной системы канальцев.

Как правило, гранулярная ЭПС посредством канальцев связана с мембранами ядерной оболочки — именно таким образом происходят сложные процессы синтеза и транспорта белковых молекул.

Гранулярная эндоплазматическая сеть: функции . Как уже упоминалось, вся поверхность ЭПС со стороны цитоплазмы покрыта рибосомами, которые, как известно, участвуют в ЭПС — это место синтеза и транспорта протеиновых соединений.

Эта органелла отвечает за синтез цитоплазматической мембраны. Но в большинстве случаев созданные белковые молекулы далее с помощью мембранных пузырьков транспортируются в где происходит их дальнейшая модификация и распределение соответственно потребностям клетки и тканей.

Кроме того, в полостях цистерн ЭПС происходят и некоторые изменения белка — например, присоединение к нему углеводного компонента. Здесь же, путем агрегации образуются большие секреторные гранулы.

Агранулярная эндоплазматическая сеть: строение и функции . Строение гладкой ЭПС имеет некоторые отличия. Например, такая органелла состоит только из цистерн и не имеет системы канальцев. Комплексы такой ЭПС, как правило, имеют меньшие размеры, а вот ширина цистерны, наоборот, больше.

Гладкая эндоплазматическая сеть не имеет отношения к синтезу белковых компонентов, но исполняет ряд не менее важных функций. Например, именно здесь происходит синтез стероидных гормонов у человека и всех позвоночных животных. Именно поэтому объем гладкой ЭПС в клетках надпочечников довольно большой.

В клетках печени ЭПС вырабатывает необходимые ферменты, которые участвуют в углеводном обмене, а именно в распаде гликогена. Известно также, что печеночные клетки отвечают за обезвреживание токсинов. В цистернах этой органеллы происходит синтез гидрофильного компонента, который затем присоединяется к токсической молекуле, увеличивает ее растворимость в крови и моче. Интересно, что в гепатоцитах, которые постоянно поддаются влиянию токсинов (ядов, алкоголя), практически вся клетка занята плотно расположенными цистернами гладкой ЭПС.

В мышечных клетках имеется особая разновидность гладкой ЭПС — саркоплазматический ретикулум. Он выступает как депо кальция, регулируя, таким образом, процессы активности и покоя клетки.

Как видно, функции ЭПС разнообразны и очень важны для нормального функционирования здоровой клетки.

Строение клетки. Эндоплазматическая сеть


1. Почему комплекс Гольджи хорошо развит в клетках желез внутренней секреции?
2. В каких клетках большинство органоидов отсутствует?
3. Что такое клеточные включения?

Эндоплазматическая сеть (ЭПС).

Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему трубочек и полостей, пронизывающих цитоплазму клетки. ЭПС образована мембраной, которая имеет такое же строение, как и плазматическая мембрана. Трубочки и полости ЭПС могут занимать до 50% объема клетки и нигде не обрываются и не открываются в цитоплазму (рис. 31). Различают гладкую и шероховатую (гранулярную) ЭПС. На шероховатой ЭПС расположено множество рибосом. Именно здесь синтезируется большинство белков. На поверхности гладкой ЭПС идет синтез углеводов и липидов. Вещества, синтезированные на мембранах ЭПС, переносятся внутрь трубочек ретикулума и по ним транспортируются к местам накопления или использования в биохимических реакциях. Шероховатая сеть лучше развита в тех клетках, которые синтезируют белки для нужд всего организма (например, белковые гормоны), а гладкая - в тех клетках, которые синтезируют, к примеру, сахара и липиды . В гладкой ЭПС, кроме того, накапливаются ионы кальция - важные регуляторы всех функций клеток и целого организма.

Комплекс (аппарат) Гольджи.

Система внутриклеточных цистерн, в которых накапливаются вещества, синтезированные клеткой, носит название комплекса (аппарата) Гольджи. Здесь же эти вещества претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и переносятся в те места цитоплазмы, где они необходимы, или же транспортируются к клеточной мембране и выходят за пределы (рис. 32). Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с ее каналами. Поэтому все вещества, синтезированные на мембранах ЭПС, переносятся в комплекс Гольджи внутри мембранных пузырьков, отпочковывающихся от ЭПС и сливающихся затем с комплексом Гольджи. Еще одна важная функция комплекса Гольджи - это сборка мембран клетки. Вещества, из которых состоят мембраны (белки, липиды), поступают в комплекс Гольджи из ЭПС, в полостях комплекса Гольджи собираются участки мембран, из которых изготовляются особые мембранные пузырьки. Они передвигаются по цитоплазме в те места клетки, где требуется достроить мембрану .

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 10 класс
Отправлено читателями с интернет-сайта

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы.

Различают две разновидности эндоплазматической сети:

    зернистая (гранулярная или шероховатая);

    незернистая или гладкая.

На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Следует помнить, что названные две разновидности являются не самостоятельными формами эндоплазматической сети, так как можно проследить переход зернистой эндоплазматической сети в гладкую и наоборот.

Функции зернистой эндоплазматической сети:

    синтез белков, предназначенных для выведения из клетки ("на экспорт");

    отделение (сегрегация) синтезированного продукта от гиалоплазмы;

    конденсация и модификация синтезированного белка;

    транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;

    синтез билипидных мембран.

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

    участие в синтезе гликогена;

    синтез липидов;

    дезинтоксикационная функция — нейтрализация токсических веществ, посредством соединения их с другими веществами.

Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы — диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом, в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена.

В диктиосоме различают два полюса:

    цис-полюс — направлен основанием к ядру;

    транс-полюс — направлен в сторону цитолеммы.

Установлено, что к цис-полюсу подходят транспортные вакуоли, несущие в пластинчатый комплекс продукты, синтезированные в зернистой эндоплазматической сети. От транс-полюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его выведения из клетки. Однако часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.

Функции пластинчатого комплекса:

    транспортная — выводит из клетки синтезированные в ней продукты;

    конденсация и модификация веществ, синтезированных в зернистой эндоплазматической сети;

    образование лизосом (совместно с зернистой эндоплазматической сетью);

    участие в обмене углеводов;

    синтез молекул, образующих гликокаликс цитолеммы;

    синтез, накопление и выведение муцина (слизи);

    модификация мембран, синтезированных в эндоплазматической сети и превращение их в мембраны плазмолеммы.

Среди многочисленных функций пластинчатого комплекса на первое место ставят транспортную функцию. Именно поэтому его нередко называют транспортным аппаратом клетки.

Лизосомы наиболее мелкие органеллы цитоплазмы (0,2-0,4 мкм) и поэтому открытые (де Дюв, 1949 г.) только с использованием электронного микроскопа. Представляют собой тельца, ограниченные липидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (50 гидролаз), способных расщеплять любые полимерные соединения (белки, липиды, углеводы и их комплексы) на мономерные фрагменты. Маркерным ферментом лизосом является кислая фосфатаза.

Функция лизосом — обеспечение внутриклеточного пищеварения, то есть расщепления как экзогенных, так и эндогенных веществ.

Классификация лизосом:

    первичные лизосомы — электронноплотные тельца;

    вторичные лизосомы — фаголизосомы, в том числе аутофаголизосомы;

    третичные лизосомы или остаточные тельца.

Истинными лизосомами являются мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе.

Пищеварительная функция лизосом начинается только после слияния лизосомы с фагосомой, то есть фагоцитированным веществом, окруженным билипидной мембраной. При этом образуется единый пузырек — фаголизосома, в которой смешивается фагоцитированный материал и ферменты лизосомы. После этого начинается расщепление (гидролиз) биополимерных соединений фагоцитированного материала на мономерные молекулы (аминокислоты, моносахара и так далее). Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой, то есть используются или для образования энергии или на построение биополимерных структур. Но не всегда фагоцитированные вещества расщепляются полностью.

Дальнейшая судьба оставшихся веществ может быть различной. Некоторые из них могут быть выведены из клетки посредством экзоцитоза, по механизму, обратному фагоцитозу. Некоторые вещества (прежде всего липидной природы) не расщепляются лизосомальными гидролазами, а накапливаются и уплотняются в фаголизосоме. Такие образования называются третичными лизосомами или остаточными тельцами.

В процессе фагоцитоза и экзоцитоза осуществляется регуляция мембран в клетке:

    в процессе фагоцитоза часть плазмолеммы отшнуровывается и образует оболочку фагосомы;

    в процессе экзоцитоза эта оболочка снова встраивается в плазмолемму.

Установлено, что некоторые клетки в течение часа полностью обновляют плазмолемму.

Кроме рассмотренного механизма внутриклеточного расщепления фагоцитированных экзогенных веществ, таким же способом разрушаются эндогенные биополимеры — поврежденные или устаревшие собственные структурные элементы цитоплазмы. Вначале такие органеллы или целые участки цитоплазмы окружаются билипидной мембраной и образуется вакуоль аутофаголизосома, в которой осуществляется гидролитическое расщепление биополимерных веществ, как и в фаголизосоме.

Следует отметить, что все клетки содержат в цитоплазме лизосомы, но в различном количестве. Имеются специализированные клетки (макрофаги), в цитоплазме которых содержится очень много первичных и вторичных лизосом. Такие клетки выполняют защитные функции в тканях и называются клетками-чистильщиками, так как они специализированы на поглощение большого числа экзогенных частиц (бактерий, вирусов), а также распавшихся собственных тканей.

Пероксисомы — микротельца цитоплазмы (0,1-1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.

Элементарной и функциональной единицей всего живого на нашей планете является клетка. В данной статье Вы подробно узнаете об её строении, функциях органоидов, а также найдёте ответ на вопрос: «Чем отличается строение клеток растений и животных?».

Строение клетки

Наука, которая изучает строение клетки и её функции, называется цитологией. Несмотря на свои незначительные размеры, данные части организма имеют сложную структуру. Внутри находится полужидкое вещество, именуемое цитоплазмой. Здесь проходят все жизненно важные процессы и располагаются составляющие части - органоиды. Узнать об их особенностях Вы сможете далее.

Ядро

Самой важной частью является ядро. От цитоплазмы его отделяет оболочка, которая состоит из двух мембран. В них имеются поры, чтобы вещества могли попадать из ядра в цитоплазму и наоборот. Внутри находится ядерный сок (кариоплазма), в котором располагается ядрышко и хроматин.

Рис. 1. Строение ядра.

Именно ядро управляет жизнедеятельностью клетки и хранит генетическую информацию.

Функциями внутреннего содержимого ядра являются синтезирование белка и РНК. Из них образуются особые органеллы - рибосомы.

Рибосомы

Располагаются вокруг эндоплазматической сети, при этом делая её поверхность шероховатой. Иногда рибосомы свободно располагаются в цитоплазме. К их функциям относится биосинтез белка.

ТОП-4 статьи которые читают вместе с этой

Эндоплазматическая сеть

ЭПС может иметь шероховатую либо гладкую поверхность. Шероховатая поверхность образуется за счёт наличия рибосом на ней.

К функциям ЭПС относится синтез белка и внутренняя транспортировка веществ. Часть образованных белков, углеводов и жиров по каналам эндоплазматической сети поступает в особые ёмкости для хранения. Называются эти полости аппаратом Гольджи, представлены они в виде стопок «цистерн», которые отделены от цитоплазмы мембраной.

Аппарат Гольджи

Чаще всего располагается вблизи ядра. В его функции входит преобразование белка и образование лизосом. В данном комплексе хранятся вещества, которые были синтезированы самой клеткой для потребностей всего организма, и позднее выведутся из неё.

Лизосомы представлены в виде пищеварительных ферментов, которые заключены с помощью мембраны в пузырьки и разносятся по цитоплазме.

Митохондрии

Эти органоиды покрыты двойной мембраной:

  • гладкая - наружная оболочка;
  • кристы - внутренний слой, имеющий складки и выступы.

Рис. 2. Строение митохондрий.

Функциями митохондрий является дыхание и преобразование питательных веществ в энергию. В кристах находится фермент, который синтезирует из питательных веществ молекулы АТФ. Это вещество является универсальным источником энергии для всевозможных процессов.

Клеточная стенка отделяет и защищает внутреннее содержимое от внешней среды. Она поддерживает форму, обеспечивает взаимосвязь с другими клетками, обеспечивает процесс обмена веществ. Состоит мембрана из двойного слоя липидов, между которыми находятся белки.

Сравнительная характеристика

Растительная и животная клетка отличаются друг от друга своим строением, размерами и формами. А именно:

  • клеточная стенка у растительного организма имеет плотное строение за счёт наличия целлюлозы;
  • у растительной клетки есть пластиды и вакуоли;
  • животная клетка имеет центриоли, которые имеют значение в процессе деления;
  • наружная мембрана животного организма гибкая и может приобретать различные формы.

Рис. 3. Схема строения растительной и животной клетки.

Подытожить знания про основные части клеточного организма поможет следующая таблица:

Таблица «Строение клетки»

Органоид

Характеристика

Функции

Имеет ядерную оболочку, внутри которой содержится ядерный сок с ядрышком и хроматином.

Транскрипция и хранение ДНК.

Плазматическая мембрана

Состоит из двух слоёв липидов, которые пронизаны белками.

Защищает содержимое, обеспечивает межклеточные обменные процессы, реагирует на раздражитель.

Цитоплазма

Полужидкая масса, содержащая липиды, белки, полисахариды и пр.

Объединение и взаимодействие органелл.

Мембранные мешочки двух типов (гладкие и шероховатые)

Синтез и транспортировка белков, липидов, стероидов.

Аппарат Гольджи

Располагается возле ядра в виде пузырьков или мембранных мешочков.

Образует лизосомы, выводит секреции.

Рибосомы

Имеют белок и РНК.

Образуют белок.

Лизосомы

В виде мешочка, внутри которого находятся ферменты.

Переваривание питательных веществ и отмерших частей.

Митохондрии

Снаружи покрыты мембраной, содержат кристы и многочисленные ферменты.

Образование АТФ и белка.

Пластиды

Покрыты мембраной. Представлены тремя видами: хлоропласты, лейкопласты, хромопласты.

Фотосинтез и запас веществ.

Мешочки с клеточным соком.

Регулируют давление и сохраняют питательные вещества.

Центриоли

Имеет ДНК, РНК, белки, липиды, углеводы.

Участвует в процессе деления, образуя веретено деления.

Что мы узнали?

Живой организм состоит из клеток, которые имеют достаточно сложное строение. Снаружи она покрыта плотной оболочкой, которая защищает внутреннее содержимое от воздействия внешней среды. Внутри находится ядро, регулирующее все происходящие процессы и хранящее генетический код. Вокруг ядра расположена цитоплазма с органоидами, каждый из которых имеет свои особенности и характеристику.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 1112.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top