Звуковые волны интенсивность громкость звука. Энергия звуковой волны

Звуковые волны интенсивность громкость звука. Энергия звуковой волны

Интенсивность звука (сила звука)

Интенсивностью звука называется физическая величина, равная средней по времени энергии, переносимой за единицу времени звуковой волной через единичную площадку, ориентированную перпендикулярно направлению распространения волны (плотность потока энергии). Для периодического звука усреднение проводится либо за промежуток времени, большой по сравнению с периодом, либо за целое число периодов.

Для плоской гармонической волны интенсивность звука равна:

где - амплитуда звукового давления; – амплитуда скорости колебаний; - плотность среды, в которой распространяется звук; – скорость звука в среде (фазовая или групповая, если дисперсия мала, то скорости практически совпадают).

В международной системе единиц СИ интенсивность звука измеряется в .

Уровень интенсивности

Уровень интенсивности – оценочная величина интенсивности, выраженная в децибелах (дБ). Число децибел N равно:

(2)

где - интенсивность данного звука, - пороговая интенсивность.

Пороговая интенсивность

Пороговая интенсивность – интенсивность, соответствующая порогу чувствительности уха человека. За пороговую интенсивность принята величина:

(3)

Другой количественной характеристикой звука является эффективное звуковое давление, т.к. человек физиологически воспринимает интенсивность звука как давление, которое оказывают звуковые волны на органы слуха. Количественной мерой в этом случае служит и уровень звукового давления . Следует отличать звуковое давление от давления звука. Давление звукового излучения (иначе – давление звука, радиационное давление) – постоянное давление, которое испытывает тело, находящееся в стационарном звуковом поле. Давление звукового излучения пропорционально плотности звуковой энергии. Оно мало по сравнению со звуковым давлением. Звуковое давление в несколько сот раз больше давления звука.

Эффективное звуковое давление – эффективное (или действующее) значение звукового давления (среднеквадратичное):

(4)

См. формулу (1).

Уровень звукового давления

Уровень звукового давления – оценочная величина давления, выражаемая в белах (Б) или децибелах (дБ):

(5)

где - условный порог слышимости; k – нормировочный коэффициент. Если k=1, то уровень звукового давления измеряется в белах (Б); если k=10, то уровень звукового давления измеряется в дБ.

Условный порог слышимости

Условный порог слышимости задается как числовое значение звукового давления при частотах 1,5 – 3 кГц, равное

Более подробно теорию можно прочесть в методических указаниях «Шумы и вибрации» , а также в прилагаемом в конце данной работы списке литературы .

Описание прибора

Универсальный прибор SLM 329 (Sound Level Meter 329) позволяет провести измерения уровня эффективного звукового давления в широком диапазоне. Пределы измерений и спецификация прибора приведены в таблице 1.Шаг измерений и приборная погрешность приведены в таблице 2.

Прибор нельзя эксплуатировать в условиях:

повышенной влажности;

повышенной температуры (более );

при прямых ярких лучах Солнца; при попадании яркого света или заметном нагревании жидкокристаллический дисплей может стать чёрным, а сам прибор не пригодным для измерений. Однако если экстремальные условия всё же не привели к порче прибора, то после остывания в течение 1-2 часов прибор снова будет готов к работе;

сильного запыления или рядом с открытым огнём;

во время грозы или в районе сильных электромагнитных полей.

Перед началом работы прибор должен достичь комнатной температуры, поэтому, принеся его с мороза, не начинайте измерения сразу, подождите, пока прибор нагреется.

Питание осуществляется от батарейки 9 вольт. Когда ресурс батарейки заканчивается, в левой части дисплея появляется соответствующий значок. Необходимо сменить батарею. Смена батарейки производится только лаборантом или преподавателем.

Никогда не включайте прибор, когда открыт отсек батарейки.

Таблица 1

Технические характеристики и пределы измерений SLM 329 (спецификация прибора)

Параметр Значение
Дисплей Жидкокристаллический четырёхразрядный
Максимальная скорость измерений 2 измерения в секунду
Диапазон От 40 дБ до 130 дБ
Частоты измеряемых сигналов От 125 Гц до 8 кГц
Время проведения одного измерения В режиме FAST 125 мс, в режиме SLOW 1 с
Рабочая температура От до
Относительная влажность От 10% до 75%, конденсат не допустим
Оптимальная температура для проведения измерений
Индикация необходимости замены батарейки Если напряжение батарейки падает до уровня ниже 7,5 В, то на дисплее появляется значок
Рекомендуемые батарейки NEDA 1604 9V или 6F22 9V («Крона»)
Время непрерывной работы без замены питания В непрерывном режиме измерений время работы не более 10 часов
Вес 170 г с батарейкой
Размеры: длина ширина высота 231 53 33 мм

Таблица 2

Шаг и точность измерений

Элементы управления

1 – ёмкостной микрофон,

2, 4 – цифровой жидкокристаллический дисплей,

3 – клавиша включения (включить/выключить) (ON/OFF),

5 – клавиша для установки фильтров: «А» для обычных звуковых сигналов, «С» - для сигналов низкой частоты или содержащих низкочастотные компоненты,

6- клавиша «Быстро/Медленно» (FAST/SLOW) для установки скорости измерений: «Быстро» (FAST) для нормального режима, «Медленно» (SLOW) для измерения сигналов с увеличивающейся или уменьшающейся интенсивностью,

7 – клавиша «Уровень» (LEVEL) для переключения диапазонов измерений (40 дБ, 70 дБ) (60 дБ, 90 дБ) (80 дБ, 110 дБ) (100 дБ, 130 дБ),

8 – тумблер «CAL» для калибровки.

Порядок включения прибора и установки необходимых режимов измерений

1. Для включения прибора нажмите клавишу - самая верхняя на передней панели. Этой же клавишей выключите прибор по окончании измерений.

2. Включите режим максимального сигнала клавишей MAX – вторая сверху на передней панели. Индикация включённого режима находится на дисплее справа вверху. Если индикация по каким-то причинам пропала, то нажмите клавишу ещё раз. Она появится, а режим включится.


3. Далее надо установить фильтр. Если в изучаемом сигнале не предполагается низкочастотных компонент, то нажатием клавиши A/C надо установить фильтр А. Если предполагается проводить измерения сигналов низкой частоты или содержащих низкочастотную компоненту, то той же клавишей надо установить фильтр С. Индикация установленного фильтра расположена справа на дисплее.

4. Установите скорость проведения измерения клавишей FAST/SLOW. Как правило, для проведения измерений удобен режим FAST. Но если предполагается, что интенсивность сигнала может меняться в процессе измерения, то необходимо установить режим SLOW. Индикация на дисплее справа вверху.

5. Необходимо выбрать диапазон измерений. Выбор производится клавишей LEVEL. Индикация внизу дисплея. До получения результатов измерений и уточнения диапазона можно ориентироваться на следующие уровни звука:

(40 дБ, 70 дБ) – привычный "домашний" уровень: разговор, работающий телевизор, негромкие бытовые приборы;

(60 дБ, 90 дБ) – технические звуки, например, работающая дрель, пылесос, проезжающие близко автомобили и проч.;

(80 дБ, 110 дБ) – это уже достаточно громкие звуки, например, спортивный мотоцикл, автомобиль без глушителя, автомобиль, который ездит в режиме «Формулы-1» и т.п.;

(100 дБ, 130 дБ) – уровень звуков на грани болевых ощущений, при которых не слышно собеседника – взлетающий самолёт, ревущий турбодвигатель, канонада, выстрелы из ружья, пушечный фейерверк прямо «над ухом». Звуки такого уровня могут оказаться опасными для слуховых органов. Поэтому, если Вы намереваетесь проводить измерения в данном диапазоне, для безопасности используйте специальные наушники.

Для обеспечения правильности работы прибора его необходимо калибровать раз в год.

Процесс калибровки

В качестве источника звукового сигнала используется источник с уровнем эффективного звукового давления 94 дБ, частотой 1 кГц и синусоидальной формой импульсов. Для проведения измерений устанавливаются следующие режимы:

фильтр А,

время измерений FAST,

режим измерений без индикации MAX,

диапазон (80 дБ, 110 дБ).

Справа сбоку расположено маленькое гнездо для ключа, которым можно провести калибровку, поворачивая который можно добиться показаний на дисплее до значения 94 дБ.

Калибровку прибора проводит только лаборант.

Порядок выполнения работы

Силой, или интенсивностью, звука в проходящей (т. е. нестоячей) волне называется количество энергии, ежесекундно протекающей через площадки, перпендикулярной к направлению распространения волны.

Интенсивность (силу) звука измеряют в или же в единицах, в 10 раз больших, а именно в (микроватт - миллионная доля ватта).

Вычисления показывают, что интенсивность звука равна отношению квадрата амплитуды избыточного давления к удвоенному акустическому сопротивлению среды:

Это справедливо как для плоских, так и для сферических волн. В случае плоских волн, если пренебречь потерями, связанными с внутренним трением, сила звука не должна изменяться с расстоянием. В случае сферических волн амплитуды смещения, скорости частиц и избыточного давления убывают как величины, обратные первой степени расстояния от источника звука. Следовательно, в случае сферических волн сила звука убывает обратно пропорционально квадрату расстояния от источника звука.

Для измерения силы звука обычно применяют микрофоны (их устройство описано во втором томе курса, в главе об электрических колебаниях). Для измерения силы звука применяют также диск Рэлея - это тонкий небольшой диск (изготовленный из пластинки слюды толщиной в 2-3 сотых миллиметра) диаметром в подвешенный на тончайшей нити. В поле звуковых волн на диск

действует вращающая пара, момент которой пропорционален силе звука и не зависит от частоты звука. Эта вращающая пара стремится повернуть диск так, чтобы плоскость его была перпендикулярна к направлению распространения звуковых волн. Обычно диск Рэлея подвешивают в звуковом поле под углом в 45° к направлению распространения волн и измеряют силу звука, определяя угол поворота диска.

Для определения силы звука можно также измерять давление которое звуковые волны оказывают на твердую стенку. Это давление пропорционально силе звука:

здесь есть отношение теплоемкости среды при постоянном давлении к теплоемкости при постоянном объеме, с - скорость звука.

Сопоставляя приведенную формулу с формулой (6), мы видим, что давление, оказываемое звуковыми волнами на твердую стенку, пропорционально квадрату амплитуды избыточного давления и обратно пропорционально плотности среды.

Определение интенсивности звука, данное в начале настоящего параграфа, утрачивает смысл для стоячей волны. Действительно, если амплитуды давления в прямой и отраженной волнах равны между собой, то через площадку, поставленную перпендикулярно к оси волны, протекают в противоположных направлениях равные количества энергии. Поэтому результирующий поток энергии через площадку равен нулю. В этом случае интенсивность звука характеризуют плотностью звуковой энергии, т. е. энергией, содержащейся в звукового поля.

Для вычисления плотности звуковой энергии в поле плоской проходящей волны представим себе цилиндрический объем сечением в и длиной, численно равной скорости звука ось цилиндра пусть совпадает с направлением распространения волны. Ясно, что общее количество энергии, содержащейся внутри цилиндра, численно равно интенсивности звука С другой стороны, при сечении в объем цилиндра численно равен таким образом, плотность звуковой энергии оказывается равной

Представление о движении энергии и важнейшие в настоящее время понятия о плотности энергии в точке среды и о скорости движения энергии были введены в науку в 1874 г. Н. А. Умовым в его докторской диссертации, где, в частности, дано строгое обоснование уравнения (7). Десятью годами позже идеи Умова были развиты английским физиком Пойнтингом в применении к электромагнитным волнам.

Поясним, как вычисляется интенсивность звука в отраженной звуковой волне и в преломленной волне.

Законы отражения и преломления звуковых волн подобны законам отражения и преломления света. При отражении звуковой волны угол, образуемый направлением врлны с нормалью к отражающей поверхности (угол падения), равен углу, образуемому направлением отраженной волны с той же нормалью (углу отражения).

При переходе звуковой волны из одной среды в другую угол падения и угол преломления связаны между собой соотношением

где - скорости звука в первой и во второй средах.

Если интенсивность звука в первой среде, то при нормальном падении волн на поверхность раздела интенсивность звука во второй среде будет:

где, как было доказано Рэлеем, коэффициент проникновения звука определяется формулой

Очевидно, что коэффициент отражения равен

Из формулы Рэлея мы видим, что чем больше различаются акустические сопротивления сред тем меньшая доля звуковой энергии проникает через поверхность раздела сред. Нетрудно сообразить, что когда акустическое сопротивление второй среды весьма велико в сравнении с акустическим сопротивлением первой среды, то

Такой случай имеет место при переходе звука из воздуха в массу воды или в толщу бетона, дерева; акустическое сопротивление этих сред в несколько тысяч раз больше акустического сопротивления воздуха. Стало быть, при нормальном падении звука из воздуха на массивы воды, бетона, дерева в эти среды проникает не более тысячной доли интенсивности звука. Тем не менее бетонная или деревянная стена может оказаться весьма звукопроводной, если она тонка; в этом случае стена воспринимает и передает упругие колебания, как большая мембрана. Приведенная выше формула для такого случая неприменима.

Отдельные слои атмосферного воздуха вследствие неодинакового температурного состояния могут обладать различным акустическим сопротивлением; от поверхности раздела таких слоев воздуха происходит отражение звука. Этим объясняется, что дальность слышимости звуков в атмосфере подвержена значительным колебаниям. Дальность слышимости в зависимости от степени однородности воздуха может изменяться в 10 и более раз. Погода (дождь, снег, туман) не влияет на звукопроводность воздуха. В ясный день и во время густого тумана слышимость может быть одинаковой. И, напротив, в дни, когда погода видимым образом одинакова, звукопроводность воздуха может оказаться весьма различной, если степень однородности слоев воздуха неодинакова.

Одной из важных задач акустики является выяснение условий, влияющих на интенсивность звука акустических излучателей. Когда колеблющееся тело-излучатель отдает звуковую энергию во внешнюю среду, это тело совершает работу против реакции звукового поля т. е. против сил, обусловленных избыточным давлением в излучаемой волне и тормозящих колебательное движение излучателя.

Вычисление показывает, что когда излучатель имеет размеры, большие сравнительно с длиной волны, он излучает плоскую волну, причем мощность звукового излучения равна половине произведения амплитуды скорости колебательного движения излучателя на площадь излучателя 5 и на акустическое сопротивление среды:

Если же излучатель мал сравнительно с длиной волны, то он излучает сферическую волну, причем мощность излучения в этом случае определяется формулой

Для какого-либо излучателя заданных размеров (например, для колеблющегося диска площадью первая из двух приведенных формул для мощности определяет мощность излучения высоких частот (коротких волн), вторая - мощность излучения низких частот (длинных волн).

Часто требуется чтобы в области высоких, средних и низких частот излучатель имел одинаковую мощность (этим качеством должны обладать мембраны патефонов, диффузоры громкоговорителей). Но при заданной амплитуде колебательного движения излучатели малого размера при удовлетворительной мощности излучения высоких звуков имеют весьма малую мощность излучения низких звуков. Это делает их в музыкальном отношении неполноценными.

Из сказанного ясны недостатки излучателей малого размера. Излучатели большого размера обладают тем существенным неудобством, что их масса значительна и, стало быть, для сообщения им колебательного движения с требуемой амплитудой необходимо прилагать очень большие силы. Поэтому с технической точки зрения желательно поставить излучатель малого размера в условия наиболее выгодного акустического режима.

Эта задача может быть решена с помощью специального устройства, соединяющего излучатель с открытым пространством, а именно с помощью рупора. Рупор представляет собой постепенно расширяющуюся трубу, в узком конце которой (в горле) колеблется излучатель. Жесткие стенки рупора не дают звуковой волне «расползаться» в стороны. Таким образом, фронт волны сохраняет более или менее плоскую форму, что делает первую из приведенных выше формул

для мощности излучения применимой не только в области высоких, но также и в области низких частот.

Обычно изучение интенсивности звука приходится проводить для замкнутых помещений. Исследование звука в замкнутых помещениях важно для проектирования аудиторий, театров, концертных залов и т. п. и для исправления акустических дефектов помещений, построенных без предварительного акустического расчета. Отрасль техники, занимающаяся этими вопросами, носит название архитектурной акустики.

Основной особенностью акустических процессов в замкнутых помещениях является наличие многократных отражений звука от ограничивающих поверхностей (стен, потолка). В помещении средних размеров звуковая волна претерпевает несколько сот отражений, прежде чем энергия ее уменьшится до порога слышимости В больших помещениях звук достаточной силы может быть слышен после выключения источника в течение нескольких десятков секунд за счет существования отраженных волн, движущихся во всевозможных направлениях. Совершенно очевидно, что такое постепенное замирание звука, с одной стороны, выгодно, так как звук усиливается за счет энергии отраженных волн; однако, с другой стороны, чрезмерно медленное замирание может существенно ухудшить восприятие связного звучания (речи, музыки) вследствие того, что каждая новая часть связного контекста (например, каждый новый слог речи) перекрывается еще не отзвучавшими предыдущими. Уже из этих беглых рассуждений понятно, что для создания хорошей слышимости время отзвука в аудитории должно иметь некоторую оптимальную величину.

При каждом отражении часть энергии теряется вследствие поглощения. Отношение поглощенной энергии звука к падающей называют коэффициентом поглощения звука. Приводим его значения для ряда случаев:

Очевидно, что чем больше коэффициент поглощения звука, характерный для стен какого-либо помещения, и чем меньше размеры этого помещения, тем короче время отзвука.

Рис. 162. Оптимальная реверберация для помещений различного объема.

Время отзвука, в течение которого интенсивность звука убывает до порога слышимости, зависит не только от свойств помещения, но и от начальной силы звука. Чтобы внести определенность в расчет акустических свойств аудиторий, принято (совершенно условно) рассчитывать время, в течение которого плотность звуковой энергии уменьшается до одной миллионной доли начального значения. Это время называют временем стандартной реверберации, или просто реверберацией.

Оптимальное значение реверберации, при котором слышимость может считаться наилучшей, многократно определялось экспериментально. В малых

помещениях (объемом не свыше оптимальной является реверберация 1,06 сек. При дальнейшем увеличении объема оптимальная реверберация растет пропорционально как это представлено на рис. 162. В помещениях с плохими акустическими свойствами (слишком «гулких») реверберация вместо оптимального значения в 1-2 сек. составляет 3-5 сек.

Февраль 18, 2016

Мир домашних развлечений довольно разнообразен и может включать в себя: просмотр кино на хорошей домашней кинотеатральной системе; увлекательный и захватывающий игровой процесс или прослушивание музыкальных композиций. Как правило, каждый находит что-то своё в этой области, или сочетает всё сразу. Но какими бы не были цели человека по организации своего досуга и в какую бы крайность не ударялись - все эти звенья прочно связаны одним простым и понятным словом - "звук". Действительно, во всех перечисленных случаях нас будет вести за ручку звуковое сопровождение. Но вопрос этот не так прост и тривиален, особенно в тех случаях, когда появляется желание добиться качественного звучания в помещении или любых других условиях. Для этого не всегда обязательно покупать дорогостоящие hi-fi или hi-end компоненты (хотя будет весьма кстати), а бывает достаточным хорошее знание физической теории, которая способна устранить большинство проблем, возникающих у всех, кто задался целью получить озвучку высокого качества.

Далее будет рассмотрена теория звука и акустики с точки зрения физики. В данном случае я постараюсь сделать это максимально доступно для понимания любого человека, который, возможно, далёк от знания физических законов или формул, но тем не менее страстно грезит воплощением мечты создания совершенной акустической системы. Я не берусь утверждать, что для достижения хороших результатов в этой области в домашних условиях (или в автомобиле, например) необходимо знать эти теории досканально, однако понимание основ позволит избежать множество глупых и абсурдных ошибок, а так же позволит достичь максимального эффекта звучания от системы любого уровня.

Общая теория звука и музыкальная терминология

Что же такое звук ? Это ощущение, которое воспринимает слуховой орган "ухо" (само по себе явление существует и без участия «уха» в процессе, но так проще для понимания), возникающее при возбуждении барабанной перепонки звуковой волной. Ухо в данном случае выступает в роли "приёмника" звуковых волн различной частоты.
Звуковая волна же представляет собой по сути последовательный ряд уплотнений и разряжений среды (чаще всего воздушной среды в обычных условиях) различной частоты. Природа звуковых волн колебательная, вызываемая и производимая вибрацией любых тел. Возникновение и распространение классической звуковой волны возможно в трёх упругих средах: газообразных, жидких и твёрдых. При возникновении звуковой волны в одном из этих типов пространства неизбежно возникают некоторые изменения в самой среде, например, изменение плотности или давления воздуха, перемещение частиц воздушных масс и т.д.

Поскольку звуковая волна имеет колебательную природу, то у неё имеется такая характеристика, как частота. Частота измеряется в герцах (в честь немецкого физика Генриха Рудольфа Герца), и обозначает количество колебаний за период времени, равный одной секунде. Т.е. например, частота 20 Гц обозначает цикл в 20 колебаний за одну секунду. От частоты звука зависит и субъективное понятие его высоты. Чем больше звуковых колебаний совершается за секунду, тем «выше» кажется звучание. У звуковой волны так же имеется ещё одна важнейшая характеристика, имеющая название - длина волны. Длиной волны принято считать расстояние, которое проходит звук определённой частоты за период, равный одной секунде. Для примера, длина волны самого низкого звука в слышимом диапазоне для человека частотой 20 Гц составляет 16,5 метров, а длина волны самого высокого звука 20000 Гц составляет 1,7 сантиметра.

Человеческое ухо устроено таким образом, что способно воспринимать волны только в ограниченном диапазоне, примерно 20 Гц - 20000 Гц (зависит от особенностей конкретного человека, кто-то способен слышать чуть больше, кто-то меньше). Таким образом, это не означает, что звуков ниже или выше этих частот не существует, просто человеческим ухом они не воспринимаются, выходя за границу слышимого диапазона. Звук выше слышимого диапазона называется ультразвуком , звук ниже слышимого диапазона называется инфразвуком . Некоторые животные способны воспринимать ультра и инфра звуки, некоторые даже используют этот диапазон для ориентирования в пространстве (летучие мыши, дельфины). В случае, если звук проходит через среду, которая напрямую не соприкасается с органом слуха человека, то такой звук может быть не слышим или сильно ослабленным в последствии.

В музыкальной терминологии звука существуют такие важные обозначения, как октава, тон и обертон звука. Октава означает интервал, в котором соотношение частот между звуками составляет 1 к 2. Октава обычно очень хорошо различима на слух, в то время как звуки в пределах этого интервала могут быть очень похожими друг на друга. Октавой также можно назвать звук, который делает вдвое больше колебаний, чем другой звук, в одинаковый временной период. Например, частота 800 Гц, есть ни что иное, как более высокая октава 400 Гц, а частота 400 Гц в свою очередь является следующей октавой звука частотой 200 Гц. Октава в свою очередь состоит из тонов и обертонов. Переменные колебания в гармонической звуковой волне одной частоты воспринимаются человеческим ухом как музыкальный тон . Колебания высокой частоты можно интерпретировать как звуки высокого тона, колебания низкой частоты – как звуки низкого тона. Человеческое ухо способно чётко отличать звуки с разницей в один тон (в диапазоне до 4000 Гц). Несмотря на это, в музыке используется крайне малое число тонов. Объясняется это из соображений принципа гармонической созвучности, всё основано на принципе октав.

Рассмотрим теорию музыкальных тонов на примере струны, натянутой определённым образом. Такая струна, в зависимости от силы натяжения, будет иметь "настройку" на какую-то одну конкретную частоту. При воздействии на эту струну чем-либо с одной определённой силой, что вызовет её колебания, стабильно будет наблюдаться какой-то один определенный тон звука, мы услышим искомую частоту настройки. Этот звук называется основным тоном. За основной тон в музыкальной сфере официально принята частота ноты "ля" первой октавы, равная 440 Гц. Однако, большинство музыкальных инструментов никогда не воспроизводят одни чистые основные тона, их неизбежно сопровождают призвуки, именуемые обертонами . Тут уместно вспомнить важное определение музыкальной акустики, понятие тембра звука. Тембр - это особенность музыкальных звуков, которые придают музыкальным инструментам и голосам их неповторимую узнаваемую специфику звучания, даже если сравнивать звуки одинаковой высоты и громкости. Тембр каждого музыкального инструмента зависит от распределения звуковой энергии по обертонам в момент появления звука.

Обертоны формируют специфическую окраску основного тона, по которой мы легко можем определить и узнать конкретный инструмент, а так же чётко отличить его звучание от другого инструмента. Обертоны бывают двух типов: гармонические и негармонические. Гармонические обертоны по определению кратны частоте основного тона. Напротив, если обертоны не кратны и заметно отклоняются от величин, то они называются негармоническими . В музыке практически исключается оперирование некратными обертонами, поэтому термин сводится к понятию "обертон", подразумевая под собой гармонический. У некоторых инструментов, например фортепиано, основной тон даже не успевает сформироваться, за короткий промежуток происходит нарастание звуковой энергии обертонов, а затем так же стремительно происходит спад. Многие инструменты создают так называемый эффект "переходного тона", когда энергия определённых обертонов максимальна в определённый момент времени, обычно в самом начале, но потом резко меняется и переходит к другим обертонам. Частотный диапазон каждого инструмента можно рассмотреть отдельно и он обычно ограничивается частотами основных тонов, который способен воспроизводить данный конкретный инструмент.

В теории звука также присутствует такое понятие как ШУМ. Шум - это любой звук, которой создаётся совокупностью несогласованных между собой источников. Всем хорошо знаком шум листвы деревьев, колышимой ветром и т.д.

От чего зависит громкость звука? Очевидно, что подобное явление напрямую зависит от количества энергии, переносимой звуковой волной. Для определения количественных показателей громкости, существует понятие - интенсивность звука. Интенсивность звука определяется как поток энергии, прошедший через какую-то площадь пространства (например, см2) за единицу времени (например, за секунду). При обычном разговоре интенсивность составляет примерно 9 или 10 Вт/см2. Человеческое ухо способно воспринимать звуки достаточно широкого диапазона чувствительности, при этом восприимчивость частот неоднородна в пределах звукового спектра. Так наилучшим образом воспринимается диапазон частот 1000 Гц - 4000 Гц, который наиболее широко охватывает человеческую речь.

Поскольку звуки столь сильно различаются по интенсивности, удобнее рассматривать её как логарифмическую величину и измерять в децибелах (в честь шотландского учёного Александра Грэма Белла). Нижний порог слуховой чувствительности человеческого уха составляет 0 Дб, верхний 120 Дб, он же ещё называется "болевой порог". Верхняя граница чувствительности так же воспринимается человеческим ухом не одинаково, а зависит от конкретной частоты. Звуки низких частот должны обладать гораздо бОльшей интенсивностью, чем высокие, чтобы вызвать болевой порог. Например, болевой порог на низкой частоте 31,5 Гц наступает при уровне силы звука 135 дБ, когда на частоте 2000 Гц ощущение боли появится при уже при 112 дБ. Имеется также понятие звукового давления, которое фактически расширяет привычное объяснение распространение звуковой волны в воздухе. Звуковое давление - это переменное избыточное давление, возникающее в упругой среде в результате прохождения через неё звуковой волны.

Волновая природа звука

Чтобы лучше понять систему возникновения звуковой волны, представим классический динамик, находящийся в трубе, наполненной воздухом. Если динамик совершит резкое движение вперёд, то воздух, находящийся в непосредственной близости диффузора на мгновение сжимается. После этого воздух расширится, толкая тем самым сжатую воздушную область вдоль по трубе.
Вот это волновое движение и будет впоследствии звуком, когда достигнет слухового органа и "возбудит" барабанную перепонку. При возникновении звуковой волны в газе создаётся избыточное давление, избыточная плотность и происходит перемещение частиц с постоянной скоростью. Про звуковые волны важно помнить то обстоятельство, что вещество не перемещается вместе со звуковой волной, а возникает лишь временное возмущение воздушных масс.

Если представить поршень, подвешенный в свободном пространстве на пружине и совершающий повторяющиеся движения "вперёд-назад", то такие колебания будут называться гармоническими или синусоидальными (если представить волну в виде графика, то получим в этом случае чистейшую синусойду с повторяющимися спадами и подъёмами). Если представить динамик в трубе (как и в примере, описанном выше), совершающий гармонические колебания, то в момент движения динамика "вперёд" получается известный уже эффект сжатия воздуха, а при движении динамика "назад" обратный эффект разряжения. В этом случае по трубе будет распространяться волна чередующихся сжатий и разрежений. Расстояние вдоль трубы между соседними максимумами или минимумами (фазами) будет называться длиной волны . Если частицы колеблются параллельно направлению распространения волны, то волна называется продольной . Если же они колеблются перпендикулярно направлению распространения, то волна называется поперечной . Обычно звуковые волны в газах и жидкостях – продольные, в твердых же телах возможно возникновение волн обоих типов. Поперечные волны в твердых телах возникают благодаря сопротивлению к изменению формы. Основная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет.

Скорость звука

Скорость звука напрямую зависит от характеристик среды, в которой он распространяется. Она определяется (зависима) двумя свойствами среды: упругостью и плотностью материала. Скорость звука в твёрдых телах соответственно напрямую зависит от типа материала и его свойств. Скорость в газовых средах зависит только от одного типа деформации среды: сжатие-разрежение. Изменение давления в звуковой волне происходит без теплообмена с окружающими частицами и носит название адиабатическое.
Скорость звука в газе зависит в основном от температуры - возрастает при повышении температуры и падает при понижении. Так же скорость звука в газообразной среде зависит от размеров и массы самих молекул газа, - чем масса и размер частиц меньше, тем "проводимость" волны больше и больше соответственно скорость.

В жидкой и твёрдой средах принцип распространения и скорость звука аналогичны тому, как волна распространяется в воздухе: путём сжатия-разряжения. Но в данных средах, помимо той же зависимости от температуры, достаточно важное значение имеет плотность среды и её состав/структура. Чем меньше плотность вещества, тем скорость звука выше и наоборот. Зависимость же от состава среды сложнее и определяется в каждом конкретном случае с учётом расположения и взаимодействия молекул/атомов.

Скорость звука в воздухе при t, °C 20: 343 м/с
Скорость звука в дистиллированной воде при t, °C 20: 1481 м/с
Скорость звука в стали при t, °C 20: 5000 м/с

Стоячие волны и интерференция

Когда динамик создаёт звуковые волны в ограниченном пространстве неизбежно возникает эффект отражения волн от границ. В результате этого чаще всего возникает эффект интерференции - когда две или более звуковых волн накладываются друг на друга. Особыми случаями явления интерференции являются образование: 1) Биений волн или 2) Стоячих волн. Биения волн - это случай, когда происходит сложение волн с близкими частотами и амплитудой. Картина возникновения биений: когда две похожие по частоте волны накладываются друг на друга. В какой-то момент времени при таком наложении, амплитудные пики могут совпадать "по фазе", а также могут совпадать и спады по "противофазе". Именно так и характеризуются биения звука. Важно помнить, что в отличие от стоячих волн, фазовые совпадения пиков происходят не постоянно, а через какие-то временные промежутки. На слух такая картина биений различается достаточно чётко, и слышится как периодическое нарастание и убывание громкости соответственно. Механизм возникновения этого эффекта предельно прост: в момент совпадения пиков громкость нарастает, в момент совпадения спадов громкость уменьшается.

Стоячие волны возникают в случае наложения двух волн одинаковой амлитуды, фазы и частоты, когда при "встрече" таких волн одна движется в прямом, а другая – в обратном направлении. В участке пространства (где образовалась стоячая волна) возникает картина наложения двух частотных амплитуд, с чередованием максимумов (т.н. пучностей) и минимумов (т.н. узлов). При возникновении этого явления крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. В отличие от бегущих волн, в стоячей волне отсутствует перенос энергии вследствие того, что образующие эту волну прямая и обратная волны переносят энергию в равных количествах и в прямом и в противоположном направлениях. Для наглядного понимания возникновения стоячей волны, представим пример из домашней акустики. Допустим, у нас есть напольные акустические системы в некотором ограниченном пространстве (комнате). Заставив их играть какую-нибудь композицию с большим количеством баса, попробуем изменить местоположение слушателя в помещении. Таким образом слушатель, попав в зону минимума (вычитания) стоячей волны ощутит эффект того, что баса стало очень мало, а если слушатель попадает в зону максимума (сложения) частот, то получается обратный эффект существенного увеличения басовой области. При этом эффект наблюдается во всех октавах базовой частоты. Например, если базовая частота составляет 440 Гц, то явление "сложения" или "вычитания" будет наблюдаться также на частотах 880 Гц, 1760 Гц, 3520 Гц и т.д.

Явление резонанса

У большинства твёрдых тел имеется собственная частота резонанса. Понять этот эффект достаточно просто на примере обычной трубы, открытой только с одного конца. Представим ситуацию, что с другого конца трубы подсоединяется динамик, который может играть какую-то одну постоянную частоту, её также впоследствии можно менять. Так вот, у трубы имеется собственная частота резонанса, говоря простым языком - это частота, на которой труба "резонирует" или издаёт свой собственный звук. Если частота динамика (в результате регулировки) совпадёт с частотой резонанса трубы, то возникнет эффект увеличения громкости в несколько раз. Это происходит потому, что громкоговоритель возбуждает колебания воздушного столба в трубе со значительной амплитудой до тех пор, пока не найдётся та самая «резонансная частота» и произойдёт эффект сложения. Возникшее явление можно описать следующим образом: труба в этом примере "помогает" динамику, резонируя на конкретной частоте, их усилия складываются и "выливаются" в слышимый громкий эффект. На примере музыкальных инструментов легко прослеживается это явление, поскольку в конструкции большинства присутствуют элементы, называемые резонаторами. Нетрудно догадаться, что служит цели усилить определённую частоту или музыкальный тон. Для примера: корпус гитары с резонатором ввиде отверстия, сопрягаемого с объёмом; Конструкция трубки у флейты (и все трубы вообще); Циллиндрическая форма корпуса барабана, который сам по себе является резонатором определённой частоты.

Частотный спектр звука и АЧХ

Поскольку на практике практически не встречаются волны одной частоты, то возникает необходимость разложения всего звукового спектра слышимого диапазона на обертоны или гармоники. Для этих целей существуют графики, которые отображают зависимость относительной энергии звуковых колебаний от частоты. Такой график называется графиком частотного спектра звука. Частотный спектр звука бывает двух типов: дискретный и непрерывный. Дискретный график спектра отображает частоты по отдельности, разделённые пустыми промежутками. В непрерывном спектре присутствуют сразу все звуковые частоты.
В случае с музыкой или акустикой чаще всего используется обычный график Амплитудно-Частотой Характеристики (сокращённо "АЧХ"). На таком графике представлена зависимость амплитуды звуковых колебаний от частоты на протяжении всего спектра частот (20 Гц - 20 кГц). Глядя на такой график легко понять, например, сильные или слабые стороны конкретного динамика или акустической системы в целом, наиболее сильные участки энергетической отдачи, частотные спады и подъёмы, затухания, а так же проследить крутизну спада.

Распространение звуковых волн, фаза и противофаза

Процесс распространения звуковых волн происходит во всех направлениях от источника. Простейший пример для понимания этого явления: камешек, брошенный в воду.
От места, куда упал камень, начинают расходиться волны по поверхности воды во всех направлениях. Однако, представим ситуацию с использованием динамика в неком объёме, допустим закрытом ящике, который подключён к усилителю и воспроизводит какой-то музыкальный сигнал. Несложно заметить (особенно при условии, если подать мощный НЧ сигнал, например бас-бочку), что динамик совершает стремительное движение "вперёд", а потом такое же стремительное движение "назад". Остаётся понять, что когда динамик совершает движение вперёд, он излучает звуковую волну, которую мы слышим впоследствии. А вот что происходит, когда динамик совершает движение назад? А происходит парадоксально тоже самое, динамик совершает тот же звук, только распространяется он в нашем примере всецело в пределах объёма ящика, не выходя за его пределы (ящик закрыт). В целом, на приведённом выше примере можно наблюдать достаточно много интересных физических явлений, наиболее значимым из которых является понятие фазы.

Звуковая волна, которую динамик, находясь в объёме, излучает в направлении слушателя - находится "в фазе". Обратная же волна, которая уходит в объём ящика, будет соответственно противофазной. Остаётся только понять, что подразумевают эти понятия? Фаза сигнала – это уровень звукового давления в текущий момент времени в какой-то точке пространства. Фазу проще всего понять на примере воспроизведения музыкального материала обычной напольной стерео-парой домашних акустических систем. Представим, что две такие напольные колонки установлены в неком помещении и играют. Обе акустические системы в этом случае воспроизводят синхронный сигнал переменного звукового давления, притом звуковое давление одной колонки складывается со звуковым давлением другой колонки. Происходит подобный эффект за счёт синхронности воспроизведения сигнала левой и правой АС соответственно, другими словами, пики и спады волн, излучаемых левыми и правыми динамиками совпадают.

А теперь представим, что давления звука по-прежнему меняются одинаковым образом (не претерпели изменений), но только теперь противоположно друг другу. Подобное может произойти, если подключить одну акустическую систему из двух в обратной полярности ("+" кабель от усилителя к "-" клемме акустической системе, и "-" кабель от усилителя к "+" клемме акустической системы). В этом случае противоположный по направлению сигнал вызовет разницу давлений, которую можно представить в виде чисел следующим образом: левая акустическая система будет создавать давление "1 Па", а правая акустическая система будет создавать давление "минус 1 Па". В результате, суммарная громкость звука в точке размещения слушателя будет равна нулю. Это явление называется противофазой. Если рассматривать пример более детально для понимания, то получается, что два динамика, играющие "в фазе" - создают одинаковые области уплотнения и разряжения воздуха, чем фактически помогают друг другу. В случае же с идеализированной противофазой, область уплотнения воздушного пространства, созданная одним динамиком, будет сопровождаться областью разряжения воздушного пространства, созданной вторым динамиком. Выглядит это примерно, как явление взаимного синхронного гашения волн. Правда, на практике падения громкости до нуля не происходит, и мы услышим сильно искажённый и ослабленный звук.

Самым доступным образом можно описать это явление так: два сигнала с одинаковыми колебаниями (частотой), но сдвинутые по времени. Ввиду этого, удобнее представить эти явления смещения на примере обычных круглых стрелочных часов. Представим, что на стене висит несколько одинаковых круглых часов. Когда секундные стрелки этих часов бегут синхронно, на одних часах 30 секунд и на других 30, то это пример сигнала, который находится в фазе. Если же секундные стрелки бегут со смещением, но скорость по-прежнему одинакова, например, на одних часах 30 секунд, а на других 24 секунды, то это и есть классический пример смещения (сдвига) по фазе. Таким же образом фаза измеряется в градусах, в пределах виртуальной окружности. В этом случае, при смещении сигналов относительно друг друга на 180 градусов (половина периода), и получается классическая противофаза. Нередко на практике возникают незначительные смещения по фазе, которые так же можно определить в градусах и успешно устранить.

Волны бывают плоские и сферические. Плоский волновой фронт распространяется только в одном направлении и редко встречается на практике. Сферический волновой фронт представляет собой волны простого типа, которые исходят из одной точки и распространяется во всех направлениях. Звуковые волны обладают свойством дифракции , т.е. способностью огибать препятствия и объекты. Степень огибания зависит от отношения длины звуковой волны к размерам препятствия или отверстия. Дифракция возникает и в случае, когда на пути звука оказывается какое-либо препятствие. В этом случае возможны два варианта развития событий: 1) Если размеры препятствия намного больше длины волны, то звук отражается или поглощается (в зависимости от степени поглощения материала, толщины препятствия и т.д.), а позади препятствия формируется зона "акустической тени". 2) Если же размеры препятствия сравнимы с длиной волны или даже меньше её, тогда звук дифрагирует в какой-то мере во всех направлениях. Если звуковая волна при движении в одной среде попадает на границу раздела с другой средой (например воздушная среда с твёрдой средой), то может возникнуть три варианта развития событий: 1) волна отразится от поверхности раздела 2) волна может пройти в другую среду без изменения направления 3) волна может пройти в другую среду с изменением направления на границе, это называется "преломление волны".

Отношением избыточного давления звуковой волны к колебательной объёмной скорости называется волновое сопротивление. Говоря простыми словами, волновым сопротивлением среды можно назвать способность поглощать звуковые волны или "сопротивляться" им. Коэффициенты отражения и прохождения напрямую зависят от соотношения волновых сопротивлений двух сред. Волновое сопротивление в газовой среде гораздо ниже, чем в воде или твёрдых телах. Поэтому если звуковая волна в воздухе падает на твердый объект или на поверхность глубокой воды, то звук либо отражается от поверхности, либо поглощается в значительной мере. Зависит это от толщины поверхности (воды или твёрдого тела), на которую падает искомая звуковая волна. При низкой толщине твёрдой или жидкой среды, звуковые волны практически полностью "проходят", и наоборот, при большой толщине среды волны чаще отражается. В случае отражения звуковых волн, происходит этот процесс по хорошо известному физическому закону: "Угол падения равен углу отражения". В этом случае, когда волна из среды с меньшей плотностью попадает на границу со средой большей плотности - происходит явление рефракции . Оно заключается в изгибе (преломлении) звуковой волны после "встречи" с препятствием, и обязательно сопровождается изменением скорости. Рефракция зависит также от температуры среды, в которой происходит отражение.

В процессе распространения звуковых волн в пространстве неизбежно происходит снижение их интенсивности, можно сказать затухание волн и ослабление звука. На практике столкнуться с подобным эффектом достаточно просто: например, если два человека встанут в поле на некотором близком расстоянии (метр и ближе) и начнут что-то говорить друг другу. Если впоследствии увеличивать расстояние между людьми (если они начнут отдаляться друг от друга), тот же самый уровень разговорной громкости будет становиться всё менее и менее слышимым. Подобный пример наглядно демонстрирует явление снижения интенсивности звуковых волн. Почему это происходит? Причиной тому различные процессы теплообмена, молекулярного взаимодействия и внутреннего трения звуковых волн. Наиболее часто на практике происходит превращение звуковой энергии в тепловую. Подобные процессы неизбежно возникают в любой из 3-ёх сред распространения звука и их можно охарактеризовать как поглощение звуковых волн .

Интенсивность и степень поглощения звуковых волн зависит от многих факторов, таких как: давление и температура среды. Также поглощение зависит от конкретной частоты звука. При распространении звуковой волны в жидкостях или газах возникает эффект трения между разными частицами, которое называется вязкостью. В результате этого трения на молекулярном уровне и происходит процесс превращения волны из звуковой в тепловую. Другими словами, чем выше теплопроводность среды, тем меньше степень поглощения волн. Поглощение звука в газовых средах зависит ещё и от давления (атмосферное давление меняется с повышением высоты относительно уровня моря). Что касательно зависимости степени поглощения от частоты звука, то принимая во внимание вышеназванные зависимости вязкости и теплопроводности, поглощение звука тем выше, чем выше его частота. Для примера, при нормальной температуре и давлении, в воздухе поглощение волны частотой 5000 Гц составляет 3 Дб/км, а поглощение волны частотой 50000 Гц составит уже 300 Дб/м.

В твёрдых средах сохраняются все вышеназванные зависимости (теплопроводность и вязкость), однако к этому добавляется ещё несколько условий. Они связаны с молекулярной структурой твёрдых материалов, которая может быть разной, со своими неоднородностями. В зависимости от этого внутреннего твёрдого молекулярного строения, поглощение звуковых волн в данном случае может быть различным, и зависит от типа конкретного материала. При прохождении звука через твёрдое тело, волна претерпевает ряд преобразований и искажений, что чаще всего приводит к рассеиванию и поглощению звуковой энергии. На молекулярном уровне может возникнуть эффект дислокаций, когда звуковая волна вызывает смещение атомных плоскостей, которые затем возвращаются в исходное положение. Либо же, движение дислокаций приводит к столкновению с перпендикулярными им дислокациями или дефектами кристаллического строения, что вызывает их торможение и как следствие некоторое поглощение звуковой волны. Однако, звуковая волна может и резонировать с данными дефектами, что приведет к искажению исходной волны. Энергия звуковой волны в момент взаимодействия с элементами молекулярной структуры материала рассеивается в результате процессов внутреннего трения.

В я постараюсь разобрать особенности слухового восприятия человека и некоторые тонкости и особенности распространения звука.

Интенсивность звука

Описание

Интенсивность I звуковой волны (ИЗ) - средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны, в единицу времени. Для периодических волн усреднение производится за промежуток времени больший по сравнению с периодом или за целое число периодов.

Для плоской синусоидальной бегущей волны ИЗ

I = pv ¤ 2 = p 2 ¤ 2 r c = v 2 r c ¤ 2 , (1)

где p - амплитуда звукового давления;

v - амплитуда колебательной скорости частиц;

r - плотность среды;

c - скорость звука в ней.

В сферической бегущей волне ИЗ обратно пропорциональна квадрату расстояния от источника. В стоячей звуковой волне I = 0 , т.е. потока звуковой энергии в среднем нет.

ИЗ плоской гармонической бегущей волны равна плотности энергии звуковой волны, умноженной на скорость звука. Поток звуковой энергии характеризуют вектором Умова - вектором плотности потока энергии волны, который может быть представлен как произведение ИЗ на вектор волновой нормали, т.е. единичный вектор, перпендикулярный фронту волны.

Если звуковое поле является суперпозицией гармонических волн различных частот, то для вектора средней плотности потока энергии выполняется свойство аддитивности.

В практическом аспекте для излучателей, создающих плоскую волну, под ИЗ понимают интенсивность излучения - удельную мощность излучателя, т.е. мощность звука, отнесенную к единице площади излучаемой поверхности.

ИЗ измеряется в системе единиц СИ в Вт/м2 . В ультразвуковой технике часто используют единицу Вт/см2 . ИЗ также оценивается уровнем интенсивности по шкале децибел: число децибел N = 10lg(I ¤ I 0 ) , где I - интенсивность данного звука, I 0 = 10-12 Вт/м2 .

Временные характеристики

Время инициации (log to от -12 до 1);

Время существования (log tc от -10 до 3);

Время деградации (log td от -12 до 1);

Время оптимального проявления (log tk от -1 до 1).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Источник упругих волн создает в среде звуковое поле, характеризующееся некоторым распределением звукового давления и связанного с ним значения ИЗ. Для измерения звукового давления применяют приемники различного типа, в основном пьезоэлектрические преобразователи. На частотах, близких к гиперзвуковым, используют пьезополупроводниковые и пленочные преобразователи. В жидкостях при больших интенсивностях звука применяют радиометр, на высоких частотах - термические приемники звука. Один из эталонных методов измерения ИЗ основан на эффекте диска Рэлея (см. описание «Диск Рэлея»), позволяющего определять колебательную скорость, по величине которой вычисляется значение звукового давления и ИЗ.

Применение эффекта

ИЗ определяет эффективность таких ультразвуковых технологий как ультразвуковая очистка, ультразвуковое диспергирование, упрочнение, металлизация и пайка (см. описания). При акустической кавитации (см. описание) и связаных с ней эффектов величина ИЗ оказывает решающее воздействие на процесс возникновения кавитации и динамику кавитационных пузырьков.

Литература

1. Ультразвук / Под ред. И.П. Голяминой.- М.: Советская Энциклопедия, 1979.- 400 с.

Ключевые слова

  • амплитуда
  • волна бегущая
  • волна гармоническая
  • волна плоская
  • волна стоячая
  • волна сферическая
  • давление звуковое
  • децибел
  • интенсивность звука
  • скорость звука
  • мощность звука
  • нормаль
  • плотность среды
  • плотность потока энергии
  • поле звуковое
  • удельная мощность
  • умова вектор
  • ультразвук
  • фронт волны
  • энергия волны

Разделы естественных наук:

В слуховом ощущении различают высоту, громкость и тембр звука . Эти характеристики слухового ощущения связаны с частотой, интенсивностью и гармоническим спектром - объективными характеристиками звуковой волны. Задачей системы звуковых измерений является установить эту связь и таким образом дать возможность при исследовании слуха у различных людей единообразно сопоставлять субъективную оценку слухового ощущения с данными объективных измерений.

Высота звука — субъективная характеристика, определяемая частотой его основного тона: чем больше частота, тем выше звук.

В значительно меньшей степени высота зависит от интенсивности волны: на одной и той же частоте более сильный звук воспринимается более низким.

Тембр звука почти исключительно определяется спектральным составом. Например, ухо различает одну и ту же ноту, воспроизведенную на разных музыкальных инструментах. Одинаковые по основным частотам звуки речи у различных людей также отличаются по тембру. Итак, тембр - это качественная характеристика слухового ощущения, в основном обусловленная гармоническим спектром звука.

Громкость звука Е — это уровень слухового ощущения над его порогом. Она зависит, прежде всего, от интенсивности звука. Несмотря на субъективность, громкость может быть оценена количественно путем сравнения слухового ощущения от двух источников.

Уровни интенсивности и уровни громкости звука. Единицы измерения. Закон Вебера-Фехнера .

Звуковая волна создает ощущение звука, при силе звука превышающей некоторую минимальную величину, называемую порогом слышимости. Звук, сила которого лежит ниже порога слышимости, ухом не воспринимается: он слишком слаб для этого. Порог слышимости различен для различных частот (Рис. 3). Наиболее чувствительно человеческое ухо к колебаниям с частотами в области 1000 - 3000 Гц; для этой области порог слышимости достигает величины порядка I 0 = 10 -12 вт/м 2 . К более низким и к более высоким частотам ухо значительно менее чувствительно.

Колебания очень большой силы, порядка нескольких десятков Вт/м 2 , перестают восприниматься как звуковые: они вызывают в ухе осязательное чувство давления, переходящее дальше в болевое ощущение. Максимальная величина силы звука, при превышении которой возникает болевое ощущение, называется порогом осязания или порогом болевого ощущения (Рис. 3). На частоте 1 кГц она равна I m = 10 вт/м 2 .

Порог болевого ощущения различен для различных частот. Между порогом слышимости и болевым порогом лежит область слышимости, изображенная на рисунке 3.

Рис. 3. Диаграмма слышимости.

Отношение интенсивностей звука для этих порогов равно 10 13 . Удобно использовать логарифмическую шкалу и сравнить не сами величины, а их логарифмы. Получили шкалу уровней интенсивности звука. Значение I 0 принимают за начальный уровень шкалы, любую другую интенсивность I выражают через десятичный логарифм ее отношения к I 0 :


Логарифм отношения двух интенсивностей измеряется в белах (Б).

Бел (Б) — единица шкалы уровней интенсивности звука, соответствующая изменению уровня интенсивности в 10 раз. Наряду с белами широко применяются децибелы (дБ), в этом случае формулу (6) следует записать так:

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 дБ

Рис. 4. Интенсивности некоторых звуков.

В основе создания шкалы уровней громкости лежит важный психофизический закон Вебера-Фехнера. Если, согласно этому закону, увеличивать раздражение в геометрической прогрессии (то есть в одинаковое число раз), то ощущение этого раздражения будет возрастать в арифметической прогрессии (то есть на одинаковую величину).

Элементарное приращение dE громкости звука прямо пропорционально отношению приращения dI интенсивности к самой интенсивности I звука:

где k — коэффициент пропорциональности, зависящий от частоты и интенсивности.

Тогда уровень громкости E данного звука определяется путем интегрирования выражения 8 в пределах от некоторого нулевого уровня I 0 до заданного уровня I интенсивности.

Таким образом, закон Вебера-Фехнера формулируется следующим образом:

Уровень громкости данного звука (при определенной частоте звуковых колебаний) прямо пропорционален логарифму отношения его интенсивности I к значению I 0 , соответствующему порогу слышимости:

Сравнительную шкалу, равно как единицу бел и децибел, применяют также для характеристики уровней звукового давления.

Единицы измерения уровней громкости имеют такие же названия: бел и децибел, но для отличия от шкалы уровней интенсивности звука в шкале уровней громкости децибелы называют фонами (Ф).

Бел - изменение уровня громкости тона частотой 1000 Гц при изменении уровня интенсивности звука в 10 раз . Для тона 1000 Гц численные значения в белах уровня громкости и уровня интенсивности совпадают.

Если построить кривые для различных уровней громкости, например, ступенями через каждые 10 фонов, то получится система графиков (рис. 1.5), которая дает возможность найти зависимость уровня интенсивности звука от частоты при любом уровне громкости.

В целом система кривых равной громкости отражает зависимость между частотой, уровнем интенсивности и уровнем громкости звука и дает возможность по двум известным из этих величин находить третью - неизвестную.

Исследование остроты слуха, т. е. чувствительность слухового органа к звукам разной высоты, называется аудиометрией. Обычно при исследовании находят точки кривой порога слышимости при частотах, пограничных между октавами. Октава - это интервал высот тона, в котором отношение крайних частот равно двум. Существует три основных метода аудиометрии: исследование слуха речью, камертонами и аудиометром.

График зависимости порога слышимости от звуковой частоты называется аудиограммой . Потеря слуха определяется путем сравнения аудиограммы больного с нормальной кривой. Используемый при этом аппарат — аудиометр — представляет собой звуковой генератор с независимой и тонкой регулировкой частоты и уровня интенсивности звука. Аппарат оборудован телефонами для воздушной и костной проводимости и сигнальной кнопкой, с помощью которой исследуемый отмечает наличие слухового ощущения.

Если бы коэффициент k был постоянным, то из L Б и E следовало бы, что логарифмическая шкала интенсивностей звука соответствует шкале громкостей. В этом случае громкость звука так же, как и интенсивность измерялась бы в белах или децибелах. Однако сильная зависимость k от частоты и интенсивности звука не позволяет измерение громкости свести к простому использованию формулы 16.

Условно считают, что на частоте 1 кГц шкалы громкости и интенсивности звука полностью совпадают, т.е. k = 1 и

Громкость на других частотах можно измерять, сравнивая исследуемый звук со звуком частотой 1 кГц. Для этого при помощи звукового генератора создают звук частотой 1 кГц. Меняют интенсивность этого звука до тех пор, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука. Интенсивность звука частотой 1 кГц в децибелах, измеренная по прибору, будет равна громкости этого звука в фонах.

Нижняя кривая соответствует интенсивностям самых слабых слышимых звуков — порогу слышимости; для всех частот E ф = 0 Ф , для 1 кГц интенсивность звука I 0 = 10 - 12 Вт/м 2 (рис..5.). Из приведенных кривых видно, что среднее человеческое ухо наиболее чувствительно к частотам 2500 - 3000 Гц. Верхняя кривая соответствует порогу болевого ощущения; для всех частот Е ф » 130 Ф , для 1 кГц I = 10 Вт/м 2 .

Каждая промежуточная кривая отвечает одинаковой громкости, но разной интенсивности звука для разных частот. Как было отмечено, только для частоты 1 кГц громкость звука в фонах равна интенсивности звука в децибелах.

По кривой равной громкости можно найти интенсивности, которые при определенных частотах вызывают ощущение этой громкости.

Например, пусть интенсивность звука частотой 200 Гц равна 80 дБ.

Какова громкость этого звука? На рисунке находим точку с координатами: 200 Гц, 80 дБ. Она лежит на кривой, соответствующей уровню громкости 60 Ф, что и является ответом.

Энергии, соответствующие обычным звукам, весьма невелики.

Для иллюстрации этого можно привести следующий курьезный пример.

Если бы 2000 человек вели непрерывно разговор в течение 1½ часов, то энергии их голосов хватило бы лишь на то, чтобы вскипятить один стакан воды.

Рис. 5. Уровни громкости звука для звуков различных интенсивностей.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top