Эпигенетика: теоретические аспекты и практическое значение. Генетика предполагает, а эпигенетика располагает Эпигенетические законы реализации генетического кода

Эпигенетика: теоретические аспекты и практическое значение. Генетика предполагает, а эпигенетика располагает Эпигенетические законы реализации генетического кода

У двух генетически идентичных однояйцевых близнецов мужского пола, росших в одних и тех же условиях, проявлялись очень разные неврологические функции. Оба близнеца несли одну и ту же мутацию в сцепленном с Х-хромосомой гене адренолейкодистрофии ( ALD), однако у одного из близнецов наблюдались: слепота , проблемы с равновесием и утрата миелина в головном мозге - черты, типичные для прогрессирующего и летального неврологического заболевания, тогда как второй близнец оставался здоровым. Вывод исследователей, сообщавших об этой ситуации, был таков: "для разных фенотипов ADL могут быть важны какие-то негенетические факторы" ( Korenke et al., 1996). Для 1996 года это был поистине очень важный вывод, при том, что внимание медицинской цитогенетики было сфокусировано на последовательности нуклеотидов ДНК. Если фенотипические вариации нельзя объяснить нуклеотидной последовательностью ДНК, то их можно объяснить внешними факторами. По аналогии с ALD-дискордантными однояйцевыми близнецами, было обнаружено множество однояйцовых близнецов, дискордантных по шизофрении , несмотря на сходные внешние условия, в которых они росли ( Petronis, 2004). К счастью, исследования последнего десятилетия окончательно сфокусировали внимание на эпигенетических изменениях (модификациях генетической информации, не затрагивающих последовательность нуклеотидов в ДНК) как на потенциальном объяснении дискордантных фенотипов у однояйцовых близнецов и у индивидуумов, имеющих, по тем или иным причинам, одинаковые изменения в последовательности ДНК ( Dennis, 2003 ; Fraga et al., 2005).

Эпигенетические модификации контролируют паттерны экспрессии генов в клетке. Эти модификации стабильны и наследуемы, так что материнская клетка печени после деления, безусловно, даст начало другим клеткам печени. В случае с неделящимися клетками, такими как нейроны, адаптация участков хромосомы посредством модификаций хроматина дает механизм для поддержания (сохранения) эпигенетической информации и, возможно, опосредует воспроизводимый ответ нейронов на специфические раздражители. Эпигенотип (эпигенетическое состояние геномного локуса) устанавливается на основе наличия или отсутствия метилирования ДНК , модификаций хроматина и разнообразной активности некодирующих РНК, требующей дальнейшего прояснения.

У млекопитающих метилирование ДНК, являющееся наиболее хорошо изученным эпигенетическим сигналом, осуществляется преимущественно по углероду-5 симметричных динуклеотидов CpG . Состояние метилирования ДНК сохраняется после деления клетки посредством активности ДНК-метилтрансферазы 1, которая метилирует полуметилированные динуклеотиды CpG в дочерних клетках. Модификации хроматина включают ковалентные посттрансляционные модификации торчащих амино-терминальных гистоновых "хвостов" путем добавления к ним ацетильных, метильных, фосфатных, убиквитиновых или других групп. Метильные модификации могут представлять собой моно-, ди-, или три-метилирование. Эти модификации составляют потенциальный " гистоновый код ", лежащий в основе специфической хроматиновой структуры, которая, в свою очередь, влияет на экспрессию соседних генов. Так как хроматин состоит из плотно упакованных цепей ДНК, завернутых вокруг гистонов, паттерн укладки ДНК в хроматин несомненно лежит в основе изменений генной активности. Хотя гистоновые коды и хроматиновые структуры могут стабильно передаваться от родительской в дочерние клетки, механизмы, лежащие в основе репликации таких структур, поняты не полностью. Эпигенотип проявляет пластичность во время эмбрионального развитая и постнатально, в зависимости от факторов внешней среды и жизненного опыта (см. далее " Взаимодействие эпигенетики и окружающей среды "); таким образом, не удивительно, что эпигенотипы могут вносить свой вклад не только в нарушения эмбрионального развития человека, но также в постнатальную патологию и даже заболевания взрослых людей. Обнаруженный сравнительно недавно класс молекул, играющих роль в эпигенетическом сигнале, - это молекулы некодирующих РНК . Многие годы класс не кодирующих белки РНК (non-protein-coding RNA - ncRNA) включал в себя только транспортные, рибосомные и сплайсосомную РНК. Однако, благодаря тому, что стали доступны нуклеотидные последовательности геномов множества разнообразных организмов, а также благодаря молекулярно-генетическим межвидовым исследованиям (от Escherichia coli до человека), список ncRNA расширился, и это привело в результате к идентификации сотен малых ncRNAs, в том числе малой ядрышковой РНК (small nucleolar RNA - snoRNA), микроРНК (micro RNA - miRNA), коротко-интерферирующей РНК (short-interfering RNA - siRNA) и малой двунитевой РНК . Некоторые из этих молекул малых РНК регулируют модификации хроматина, импринтинг, метилирование ДНК и транскрипционный сайленсинг, что детально обсуждается в главе " RNAi и сборка гетерохроматина ".

Первое определенное свидетельство роли, которую эпигенетика играет в заболеваниях человека, имело место после того, как поняли геномный импринтинг и нашли, что некоторые гены регулируются с помощью этого механизма ( Reik, 1989). Геномный импринтинг - это форма эпигенетической регуляции, при которой экспрессия гена зависит от того, унаследован ли этот ген от матери или же от отца. Таким образом, в импринтированном диплоидном локусе имеет место неравная экспрессия материнской и отцовской аллелей. В каждом поколении родительски- специфичные импринтные метки должны стираться, "перезагружаться" и поддерживаться, делая, таким образом, импринтные локусы уязвимыми по отношению к любого рода ошибкам, которые могут происходить во время этого процесса. Такие ошибки, как и мутации генов, кодирующих белки, которые участвуют в метилировании ДНК , связывании с метилированной ДНК и модификациях гистонов , - все это вместе вносит свой вклад в быстро растущий класс нарушений, влияющих на

Эпигенетика - относительно новая отрасль генетики, которую называют одним из наиболее важных биологических открытий с момента обнаружения ДНК. Раньше считалось, что набор генов, с которым мы рождаемся, необратимо определяет нашу жизнь. Однако теперь известно, что гены можно «включать» и «выключать», а также добиться их большей или меньшей экспрессии под воздействием различных факторов образа жизни. сайт расскажет, что такое эпигенетика, как она работает, и что Вы можете сделать, чтобы повысить шансы на выигрыш в «лотерею здоровья».

Эпигенетика: изменения в образе жизни - ключ к изменению генов

Эпигенетика - наука, которая изучает процессы, приводящие к изменению активности генов без изменения последовательности ДНК. Проще говоря, эпигенетика изучает воздействие внешних факторов на активность генов.

В ходе проекта «Геном человека» было идентифицировано 25,000 генов в человеческой ДНК. ДНК можно назвать кодом, который организм использует для построения и перестройки самого себя. Однако генам и самим нужны «инструкции», по которым они определяют необходимые действия и время их выполнения.

Эпигенетические модификации и являются теми самыми инструкциями. Существует несколько видов таких модификаций, однако двумя основными из них являются те, которые затрагивают метильные группы (углерод и водород) и гистоны (белки).

Чтобы понять, как работают модификации, представим, что ген - это лампочка. Метильные группы действуют в роли выключателя света (т.е. гена), а гистоны - в качестве регулятора силы света (т.е. они регулируют уровень активности генов). Так вот, считается, что у человека есть четыре миллиона таких выключателей, которые приводятся в действие под влиянием образа жизни и внешних факторов.

Ключом к пониманию влияния внешних факторов на активность генов стали наблюдения за жизнью однояйцевых близнецов. Наблюдения показали, насколько сильными могут быть изменения в генах таких близнецов, ведущих разный образ жизни в разных внешних условиях. По идее, у однояйцевых близнецов болезни должны быть «общими», однако зачастую это не так: алкоголизм, болезнь Альцгеймера, биполярное расстройство, шизофрения, диабет, рак, болезнь Крона и ревматоидный артрит могут проявляться только у одного близнеца в зависимости от различных факторов. Причиной этого является эпигенетический дрифт - возрастное изменение экспрессии генов.

Секреты эпигенетики: как факторы образа жизни влияют на гены

Исследования в области эпигенетики показали, что только 5% генных мутаций, связанных с болезнями, являются полностью детерминированными; на остальные 95% можно повлиять посредством питания, поведения и прочих факторов внешней среды. Программа здорового образа жизни позволяет изменить активность от 4000 до 5000 различных генов.

Мы не просто являемся суммой генов, с которыми были рождены. Именно человек является пользователем, именно он управляет своими генами. При этом не столь важно, какие «генетические карты» раздала Вам природа - важно, что Вы с ними будете делать.

Эпигенетика находится на начальной стадии развития, многое еще предстоит узнать, однако существуют сведения о том, какие основные факторы образа жизни влияют на экспрессию генов.

  1. Питание, сон и упражнения

Не удивительно, что питание способно влиять на состояние ДНК. Рацион, насыщенный переработанными углеводами, приводит к «атакам» ДНК высокими уровнями глюкозы в крови. С другой стороны, обратить повреждения ДНК могут:

  • сульфорафан (содержится в брокколи);
  • куркумин (в составе куркумы);
  • эпигаллокатехин-3-галлат (есть в зеленом чае);
  • ресвератрол (содержится в винограде и вине).

Что касается сна, всего неделя недосыпа негативно сказывается на активности более 700 генов. На экспрессии генов (117) положительно сказываются занятия спортом.

  1. Стресс, отношения и даже мысли

Эпигенетики утверждают, что не только такие «материальные» факторы, как диета, сон и спорт, влияют на гены. Как оказывается, стресс, отношения с людьми и Ваши мысли тоже являются весомыми факторами, влияющими на экспрессию генов. Так:

  • медитация подавляет экспрессию провоспалительных генов, помогая бороться с воспалениями, т.е. защититься от болезни Альцгеймера, рака, болезней сердца и диабета; при этом эффект такой практики виден уже через 8 часов занятий;
  • 400 научных исследований показали, что проявление благодарности, доброта, оптимизм и различные техники, которые задействуют разум и тело, положительно влияют на экспрессию генов;
  • отсутствие активности, плохое питание, постоянные негативные эмоции, токсины и вредные привычки, а также травмы и стрессы запускают негативные эпигенетичекие изменения.

Длительность результатов эпигенетических изменений и будущее эпигенетики

Одним из наиболее потрясающих и противоречивых открытий является то, что эпигенетические изменения передаются следующим поколениям без изменения последовательности генов. Доктор Митчелл Гейнор, автор книги «План генной терапии: Возьмите генетическую судьбу под контроль при помощи питания и образа жизни», считает, что экспрессия генов также передается по наследству.

Эпигенетика, считает доктор Рэнди Джиртл, доказывает, что мы также несем ответственность за целостность нашего генома. Раньше мы считали, что от генов зависит все. Эпигенетика позволяет понять, что наше поведение и привычки могут повлиять на экспрессию генов у будущих поколений.

Эпигенетика - сложная наука, которая имеет огромный потенциал. Специалистам предстоит проделать еще много работы, чтобы определить, какие именно факторы окружающей среды влияют на наши гены, как мы можем (и можем ли) обратить заболевания вспять или максимально эффективно их предотвратить.

Генетика предполагает, а эпигенетика располагает.

Генетика предполагает, а эпигенетика располагает. Почему беременным женщинам надо принимать фолиевую кислоту?

Меня всегда поражал один интересный факт - отчего некоторые люди, так рьяно старающиеся вести здоровый образ жизни, не курить, спать положенное число часов каждый день, употреблять в пищу самые свежие и натуральные продукты, одним словом, делать всё то, о чем так любят назидательно рассказывать врачи и диетологи, порой живут гораздо меньше, чем заядлые курильщики или предпочитающие не сильно ограничивать себя в еде лежебоки? Может быть, врачи просто сгущают краски?

Что происходит?

Всё дело в том, клетки нашего организма обладают памятью, и это уже вполне доказанный факт.

Наши клетки содержат в своих ядрах одинаковый набор генов - участков ДНК, которые несут информацию о молекуле белка или РНК, определяющих путь развития организма в целом. Несмотря на то, что молекула ДНК - это самая длинная молекула в человеческом организме, в которой заключена полная генетическая информация об индивидууме, не все участки ДНК работают одинаково эффективно. В каждой конкретной клетке могут работать разные участки макромолекулы, а большая часть генов человека и вовсе неактивна. На долю генов ДНК, кодирующих белок, у человека приходится менее 2 % генома, а ведь именно они считаются носителями всех генетических признаков. Те гены, которые несут основную информацию об устройстве клетки, как раз активны на протяжении всего времени жизни клетки, но ряд других генов «работает» непостоянно, и их работа зависит от множества факторов и параметров, в том числе и внешних.

Существует достаточно большое количество наследственных заболеваний, среди которых особо выделяются генные болезни - так называемые моногенные заболевания, которые возникают при повреждениях ДНК на уровне гена - это многочисленные болезни обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов, соединительной ткани и так далее. Известно, что часто наследуется именно предрасположенность к тому или иному заболеванию, поэтому человек может быть лишь носителем мутаций в структурных генах и не страдать от генетического заболевания.

Памятник около Института цитологии и генетики СО РАН, Академгородок, Новосибирск

В организме человека существуют особые механизмы контроля экспрессии генов и клеточной дифференцировки, не затрагивающие саму структуру ДНК. «Регулировщики» могут находиться в геноме или представлять собой особые системы в клетках и осуществлять контроль над работой генов в зависимости от внешних и внутренних сигналов различной природы. Подобные процессы - дело рук эпигенетики, которая накладывает свой отпечаток даже на сверхблагополучную генетику, и последняя может в итоге не реализоваться. Другими словами, эпигенетика дает объяснение тому, как факторы окружающего мира могут повлиять на генотип, «активируя» или «дезактивируя» разные гены. Нобелевский лауреат по биологии и медицине Питер Медавар, ёмкое выражение которого вынесено в заголовок статьи, очень точно сформулировал важность влияния эпигенетики на конечный результат.

Что это такое и с чем её едят?

Эпигенетика - наука совсем молодая: её существование не насчитывает и ста лет, что, впрочем, вовсе не мешает ей находиться в статусе одной из самых перспективных дисциплин последнего десятилетия. Направление это настолько популярное, что заметки об эпигенетических исследованиях достаточно часто появляются в последнее время как в серьезных научных журналах, так и в ежемесячниках для широкого круга читателей.

Сам термин появился в 1942 году, и его придумал один из известнейших биологов Туманного Альбиона - Конрад Уоддингтон. А известен этот человек прежде всего тем, что именно он заложил основы междисциплинарного направления, названного в 1993 году термином «системная биология» и сплавляющего воедино собственно биологию и теорию сложных систем.

Конрад Хэл Уоддингтон (1905-1975)

В книге немецкого нейробиолога Петера Шпорка «Читая между строк ДНК» объясняется происхождение этого термина следующим образом - Уоддингтон предложил такое название, которое было чем-то средним между непосредственно термином «генетика» и пришедшим к нам ещё из трудов Аристотеля «эпигенезом» - так когда-то было названо учение о последовательном эмбриональном развитии организма, в ходе которого происходят образования новых органов. С переводе с греческого «epi » означает «на, над, сверху», эпитенетика - это как будто что-то «над» генетикой.
Вначале к эпигенетике относились очень пренебрежительно, что было, конечно же, следствием неясных представлений о том, как различные эпигенетические сигналы могут реализовываться в организме и к каким последствиям могут приводить. На момент выхода работ Конрада Уоддингтона в научном мире витали разрозненные догадки, а сам костяк теории ещё не был построен.
Вскоре стало понятно, что один из эпигенетических сигналов в клетке - это метилирование ДНК , то есть добавление метильной группы (-CH3 ) к цитозиновому основанию в матрице ДНК. Оказалось, что такая модификация ДНК приводит к снижению активности генов, поскольку этот процесс способен влиять на уровень транскрипции. Именно с этого момента эпигенетика прошла реинкарнацию и наконец превратилась в полноценную ветвь науки.
В 1980-е годы была опубликована работа, в которой показывалось, что метилирование ДНК коррелирует с репрессией - «замалчиванием» - генов. Это явление можно наблюдать у всех эукариот, кроме дрожжей. Нашими соотечественниками в дальнейшем были открыты тканевая и возрастная специфичность метилирования ДНК у эукариотических организмов, а также было показано, что ферментативная модификация генома может регулировать экспрессию генов и клеточную дифференцировку. Чуть позднее было доказано, что метилирование ДНК можно контролировать гормонально.
Профессор Моше Зиф (из Университета Макгилла, Канада) даёт такое образное сравнение: «Давайте представим гены в ДНК, как предложения, составленные из букв-нуклеотидов, полученных от родителей. Тогда метилирование - это как расстановка знаков препинания, которая может влиять на смысл фраз, акценты фраз, разбивку на параграфы. В итоге весь этот «текст» может по-разному читаться в разных органах -сердце, мозге и так далее. И, как мы знаем теперь, расстановка таких «знаков препинания» зависит и от тех сигналов, которые мы получаем извне. По всей видимости, этот механизм помогает гибче адаптироваться к изменчивым обстоятельствам внешнего мира».
Помимо метилирования ДНК, существует ещё целый ряд эпигенетических сигналов разнообразной природы - деметилирование ДНК, гистоновый код (модификация гистонов - ацетилирование ,метилирование , фосфорилирование и прочие), позиционирование элементов хроматина , транскрипционная и трансляционная репрессия генов малыми РНК . Интересно, что некоторые из этих процессов связаны с друг другом и даже взаимозависимы - это помогает надёжно осуществлять эпигенетический контроль за избирательным функционированием генов.

Попробуем разобраться в основах

По Уоддингтону, эпигенетика - «ветвь биологии, изучающая причинные взаимодействия между генами и их продуктами, образующими фенотип». Согласно современным представлениям, фенотип многоклеточных - это результат взаимодействия огромного количества продуктов генов в онтогенезе. Таким образом, генотип развивающегося организма на самом деле представляет собой эпигенотип. Работа эпигенотипа достаточно жёстко скоординирована и задаёт определённое направление в развитии. Однако, помимо этого направления, которое в итоге приводит к реализации основной для популяции линии фенотипа (фенотип нормы), существуют «тропинки» - субтраектории, благодаря которым реализуются устойчивые, но отличные от нормы состояния фенотипа. Так реализуется поливариантность онтогенеза.
Интересно задуматься о том, что все клетки развивающейся особи вначале тотипотентны - это значит, что они обладают одинаковой потенцией к развитию и способны дать начало любому типу клеток организма. С течением времени происходит дифференцировка, в ходе которой клетки приобретают разные свойства и функции, становясь нейронами, эритроцитами, миоцитами и так далее. Расхождение свойств происходит за счет экспрессии различных паттернов генов: на определенных этапах развития клетка получает специальные сигналы, например, гормональной природы, которые реализуют тот или иной эпигенетический «маршрут», что и приводит к клеточной дифференцировке.
Конрад Уоддингтон ввел удачную метафору - «эпигенетический ландшафт», благодаря которой становится понятен механизм влияния природно-средовых факторов на развитие молодого организма эукариот. Процесс онтогенеза - это поле возможностей, представляющее собой ряд эпигенетических траекторий, по которым проложена дорога в развитии особи от зиготы до взрослого состояния. Каждая «равнина» этого ландшафта существует не просто так - она ведёт к формированию ткани или органа, а иногда и целой системы или части организма. Траектории, получающие преимущество, в работах Уоддингтон называны креодами, а холмы и хребты, разделяющие траектории, репеллерами - «отталкивателями». В сороковых годах прошлого века ученые не имели представлений о физической модели генома, поэтому предположения Уоддингтона были настоящей революцией.

Эпигенетический ландшафт по Уоддингтону

Развивающийся организм - это шар, который может катиться, следуя различным «вариациям» своего развития. Ландшафт накладывает некоторые ограничения на траекторию движения шара по мере того, как он спускается с возвышенности. Фактор из внешней среды может повлиять на изменение курса шара, тем самым спровоцировав попадание шара в более глубокую впадину, из которой не так легко выбраться.
Промежутки между эпигенетическими впадинами - это критические точки для молодого организма, в которых процесс развития приобретает чёткие формы в том числе и в зависимости от факторов среды. Переходы между соединяющимися впадинами указывают на процесс развития между основными изменениями, а склоны впадин характеризуют скорость этого процесса: пологие впадины - знак относительно устойчивых состояний, в то время как крутые склоны - сигнал быстрых изменений. При этом в местах переходов внешние факторы вызывают более серьёзные последствия, в то время как в других областях ландшафта их влияние может быть незначительным. Красота идеи эпигенетического ландшафта заключается ещё и в том, что она хорошо иллюстрирует один из принципов развития: к одинаковому результату можно прийти совершенно разными путями.

Критические точки эпигенетического ландшафта, аналогия с шаром: 2 возможных траектории

После того, как эпигенетическая траектория выстроена, клетки уже не могут свободно отойти от своего пути развития - так из зиготы, одной-единственной «стартовой» клетки, образуется эукариотический организм, обладающий набором клеток, совершенно разных по виду и функциям. Таким образом, эпигенетическое наследование - это наследование паттерна экспрессии генов.

Иллюстрация к теории эпигенетического ландшафт. Варианты развития событий

Кроме описания морфогенеза конкретной особи, вполне можно говорить об эпигенетическом ландшафте популяции, то есть о предсказуемости реализующегося фенотипа для той или иной популяции, в том числе и относительной частоты возможных вариативных признаков.

Фолиевая кислота и неслучайные случайности

Один из первых наглядных экспериментов, показывающих, что эпигенетика действительно «располагает», был проведён профессором Рэнди Джиртлом и постдоком Робертом Уотерлендом из университета Дьюка, США. Они внедрили обычным лабораторным мышами ген окраски агути. Агути или, как их ещё называют, «южноамериканские золотистые зайцы» - род млекопитающих отряда грызунов, внешне похожих на морских свинок. Эти грызуны обладают золотистой шерстью, иногда даже с оранжевым оттенком. Интегрированный в геном мышей «чужой» ген привёл к тому, что лабораторные мыши поменяли окраску - их шерсть стала жёлтой. Однако ген агути принёс мышам некоторые неприятности: после его внедрения животные приобрели лишний вес, а также предрасположенность к диабету и онкологическим заболеваниям. Такие мыши приносили нездоровое потомство, с теми же предрасположенностями. Мышата были золотистого цвета.

Симпатичный агути (Dasyprocta aguti)

Однако экспериментаторам всё же удалось «выключить» нехороший ген, не прибегая к изменению нуклеотидов ДНК. Беременных самок трансгенных мышей посадили на специальную диету, обогащённую фолиевой кислотой - источником метильных групп. В результате рождённые мышата были уже не золотистого, а естественного окраса.

Почему «сработала» фолиевая кислота? Чем больше метильных групп поступало из пищи в развивающийся зародыш, тем больше возможностей было у ферментов, катализирующих присоединение метильной группы к эмбриональной ДНК, что дезактивировало возможное действие гена. Профессор Джиртл так прокомментировал свой эксперимент и его результаты: «Эпигенетика доказывает, что мы ответственны за целостность нашего генома. Раньше мы думали, что только гены предопределяют, кто мы. Сегодня мы точно знаем: всё, что мы делаем, всё, что мы едим, пьем или курим, оказывает воздействие на экспрессию наших генов и генов будущих генераций. Эпигенетика предлагает нам новую концепцию свободного выбора».

Профессор Рэнди Джиртл и его трансгенные мыши

Не менее интересных результатов добился Майкл Мини из Университета Макгилла в канадском Монреале, наблюдая за крысами, воспитывающими своё потомство. Если крысята с рождения постоянно получали внимание и заботу матери, то они росли спокойными по характеру и достаточно смышлёными. Напротив, крысята, матери которых с самого начала игнорировали своё потомство и мало его опекали, вырастали боязливыми и нервными. Как оказалось, причина крылась в эпигенетических факторах: забота крыс-мам о детях контролировала метилирование генов, которые отвечают за реакцию на стресс-рецепторы кортизола, экспрессируемых в гиппокампе. Ещё в одном эксперименте, проведённом чуть позже, те же факторы рассматривались применительно к человеку. Эксперимент проводился с использованием магнитно-резонансной томографии и имел целью установить какую-либо зависимость между оказываемой родителями заботой во время детского возраста и организацией мозга в целом. Оказалось, что забота матери играет ключевую роль в этом процессе. Взрослый человек, страдавший в детстве от дефицита любви и внимания матери, имел меньший размер гиппокампа, чем человек, детские годы которого были благополучны. Гиппокамп, как орган лимбической системы мозга, крайне многофункционален и похож на ОЗУ компьютера: принимает участие в формировании эмоций, определяет силу памяти, участвуя в процессе перевода кратковременной памяти в долговременную, связан с удержанием внимания, отвечает за скорость мышления, а также, помимо много другого, определяет предрасположенность человека к ряду психических заболеваний, в том числе к посттравматическому стрессовому расстройству.

Эрик Нестлер, профессор нейробиологии Фридмановского института мозга при Медицинском центре Маунт-Синай, Нью-Йорк, США, изучал механизмы возникновения депрессии на опытах всё с теми же мышами. Спокойных и дружелюбных мышей помещали в клетки с агрессивными особями. Спустя десять дней некогда счастливые и мирные мыши проявляли признаки депрессии: теряли интерес к вкусной еде, общению с противоположным полом, становились беспокойными, а некоторые из них и вовсе постоянно ели, набирая вес. Иногда оказывалось, что состояние депрессии было стабильным и полный выход представлялся возможным лишь в случае лечения антидепрессантами. Исследование ДНК-клеток «системы вознаграждения » мозга мышей из эксперимента показало, что примерно у 2000 генов изменилась картина эпигенетической модификации, а у 1200 из них увеличилась степень метилирования гистонов, при котором подавляется активность генов. Как оказалось, аналогичные эпигенетические изменения были обнаружены в ДНК головного мозга людей, которые умерли, находясь в депрессивном состоянии. Разумеется, депрессия сама по себе сложный многопараметрический процесс, но, видимо, он умеет «выключать» гены той области мозга, которая связана с получением удовольствия от жизни.

Но ведь депрессии подвержены не все люди… То же самое происходило и с мышами - около трети грызунов избежали негативного состояния, находясь в стрессовой ситуации, при том, что устойчивость присутствовала на уровне генов. Иными словами, у таких мышей отсутствовали характерные эпигенетические изменения. Однако, у «стойких» мышей произошли эпигенетические изменения в других генах клеток центра «системы вознаграждения » мозга. Таким образом, возможна альтернативная эпигенетическая модификация, которая выполняет защитную функцию, а устойчивость к стрессу - это не результат отсутствия генетически обусловленной склонности, а влияние эпигенетической программы, которая включается для защиты и противостояния травмирующему воздействию на психику.

Нестлер в своём отчете сообщил также следующее: «Мы обнаружили, что среди «защитных» генов, эпигенетически модифицированных у стойких к стрессу мышей, много таких, чья активность восстанавливается до нормы у депрессивных грызунов, которые были пролечены антидепрессантами. Это означает, что у людей, склонных к депрессии, антидепрессанты оказывают свое действие, помимо всего прочего, запуская защитные эпигенетические программы, которые естественным образом работают у более стойких индивидов. В таком случае следует искать не только новые, более мощные антидепрессанты, но и вещества, мобилизующие защитные системы организма».

Если есть в кармане пачка сигарет….

Ни для кого не секрет, что в обществе периодически вспыхивают серьезные споры, связанные с вопросом курения. Приверженцы пачки сигарет в кармане любят повторять о недоказанности вреда этой привычки, однако эпигенетика и здесь внезапно выходит из-за кулис. Всё дело в том, что у человека есть важный ген р16, способный тормозить развитие онкологических опухолей. Исследования, проведённые в последнее десятилетие, показывают, что некоторые вещества, содержащиеся в табачном дыме, заставляют выключаться р16, что, естественно, ни к чему хорошему не приводит. Но - вот что интересно! - недостаток белка, за производство которого отвечает р16, - стоп-кран для процессов старения. Учёные из Китая утверждают, что при правильном и безопасном для организма выключении гена возможно задержать процессы утраты мышечной массы и помутнения хрусталика.

В нормально функционирующей, здоровой и полноценной клетке гены, запускающие процесс образования онкологической опухоли, неактивны. Это происходит благодаря метилированию промоторов (стартовых «площадок» специфической транскрипции) этих онкогенов, называемых островками CpG. В ДНК азотистые основания цитозин (С) и гуанин (G) соединены фосфором, при этом на одном островке может находится до нескольких тысяч оснований, и около 70 % промоторов всех генов имеют эти островки.

Thymine(красный) , Adenine(зеленый) , Cytosine(синий) , Guanine(черный) - мягкие игрушки

Ацетальдегид алкоголя, побочный продуктпереработки этанола в организме человека, как и некоторые вещества, содержащиеся в табаке, ингибируют образование метильных групп на ДНК, что включает «спящие» онкогены. Известно что до 60 % всех мутаций в половых клетках приходится именно на островки CpG, что нарушает правильную эпигенетическую регуляцию генома. Метильные группы попадают в наш организм с пищей, поскольку мы не вырабатываем ни фолиевой, ни метиониновой аминокислот - богатых источников СН3 -групп. Если наш рацион не содержит этих аминокислот, то нарушение процессов метилирования ДНК неизбежно.

Разработки и планы на будущее

За последние годы эпигенетика успела существенно прорасти в технологии. В одном из обзоров Массачуссетского технологического института (США) эпигенетика названа среди десяти важнейших технологий, которые в ближайшее время могут изменить мир и оказать наибольшее влияние на человечество.
Моше Зиф так прокомментировал сложившуюся ситуацию: «В противоположность генетическим мутациям, эпигенетические изменения потенциально обратимы. Мутировавший ген скорее всего никогда не сможет вернуться в нормальное состояние. Единственное решение в данной ситуации - вырезать или дезактивировать этот ген во всех клетках, которые его несут. Гены же с нарушенным паттерном метилирования, с измененным эпигеномом могут быть возвращены к норме, и довольно просто. Уже существуют эпигенетические лекарства, например 5-азацитидин (коммерческое название - видаза), представляющий собой неметилированный аналог цитидина, нуклеозида ДНК и РНК, который, встраиваясь в ДНК, снижает ее уровень метилирования. Это лекарство используется сейчас против миелодиспластического синдрома, известного также, как прелейкемия».

Немецкая компания Epigenomics уже выпустила серию скрининг-тестов, позволяющих диагностировать онкологическое заболевание на разных стадиях его развития по эпигенетическим изменениям в организме, основанных на ДНК-метилировании. Компания продолжает свои исследования в направлении создания тестов на предмет предрасположенности к разным видам онкологии, стремясь «сделать тестирование на ДНК-метилирование в качестве обычной практики в клинической лаборатории». В том же направлении ведут работу и другие компании: Roshe Pharmaceuticals, MethylGene, NimbleGen, Sigma-Aldrich, Epigentek. В 2003 году был запущен проект Human Epigenome Project, в рамках работы над которым учёные смогли расшифровать вариабельные локусы метилирования ДНК на трех хромосомах человека: 6, 20 и 22.

Эпигенетические механизмы, участвующие в регуляции экспрессии генов

На сегодняшний день уже стало понятно, что изучение механизмов «включения-выключения» генов даёт медицине куда больше возможностей для развития, чем генная терапия. Планируется, что в будущем эпигенетика сможет рассказать нам о причинах и процессах развития некоторых заболеваний с «генетическим уклоном» - например, болезни Альцгеймера, Крона, диабета, поможет изучить механизмы, приводящие к образованию онкологических опухолей, развитию психических расстройств и так далее.

19 февраля 2015 года в журнале Nature увидела свет статья «Cell-of-origin chromatin organization shapes the mutational landscape of cancer». Группой учёных было обнаружено, что паттерн мутаций в раковой клетке соотносится со структурой хроматина. Что это означает? Очень многое. Часто онкологи развивают методы лечения конкретных видов опухолей, но плохо идентифицируют границы частных случаев. Если каждому виду онкологической опухоли поставить в соответствие изменённую структуру хроматина, то станет понятно, что та или иная опухоль развилась из конкретного типа клеток, а это полностью революционизирует лечение рака. Так называемые эпигеномные карты помогут с определением причин развития онкологии: опухолевые клетки «живут» с мутациями, распространёнными по всей ДНК клетки.

Исследуя болезнь Альцгеймера, учёные достаточно давно обнаружили некоторые «генетические вариации», связанные с заболеванием. Они были слабо изучены вследствие того, что содержались в части генома, не кодирующей белки. Биолог Манолис Келлис из Массачусетского технологического института, изучая эпигеномные карты головного мозга человека и мыши, пришёл к выводу, что эти «вариации» некоторым образом связаны с иммунной системой. «В общем-то это то, о чем многие в научной среде интуитивно догадывались, - говорит Келлис, - но на самом деле никто не показал этого на должном уровне». Исследования продолжаются.

Несмотря на превеликое множество работ, посвященных эпигенетике, в ней ещё более чем достаточно и чёрных дыр, и белых пятен. Международная организация под названием The International Human Epigenome Consortium ( http://ihec-epigenomes.org/) ставит своей целью предоставление свободного доступа к эпигенетическим материалам человека для развития фундаментальных и прикладных исследований в областях, связанных с эпигенетикой. В планах - отображение более 1000 типов клеток, исследование изменений эпигенома выбранных для испытания людей на протяжении нескольких лет с параллельным изучением влияния внешних факторов. «Эта работа будет занимать нас, по крайней мере, в ближайшие десятилетия. Геном не только трудно читать, сам процесс занимает много времени», - утверждает Манолис Келлис.

Кроме того, на данный момент ведутся серьезные разработки в области альтернативных и эффективных методов лечения психических расстройств. Уже показано, что некоторые лекарственные вещества, защищающие ацетильные группы гистонов, инактивируя ферменты-отщепители ацетильных групп, оказывают сильный антидепрессивный эффект. Фермент гистон-дезацетилаза, катализирующий отщепление, можно найти в клетках разных областей головного мозга, во многих тканях и органах, поэтому-то лекарство из-за неизбирательной активности и оказывает побочное действие. Исследователи изучают возможности создания таких веществ, которые подавляли бы активность только гистон-дезацетилазы в головном мозге, отвечающих за психическое состояние человека («центре вознаграждения»). Но никто не мешает попытаться идентифицировать другие белки, участвующие в эпигенетической модификации хроматина клеток головного мозга, или выявить гены, эпигенетически модифицирующиеся при депрессии (например, связанные с синтезом рецепторов специфических нейромедиаторов или сигнальных белков, которые участвуют в активации нейронов). Такие исследования позволят запустить поиск или синтез лекарств, которые смогут инактивировать эти конкретные гены или их продукты.

И напоследок

«Так всё-таки, как жить сейчас? Вести здоровый образ жизни? Срочно записываться в спортзал и пересматривать свой рацион питания?» - с нетерпением спросите вы. Питер Шпорк в своей книге «Читая между строк ДНК» отвечает на него с долей юмора. Он говорит о том, что резко и навсегда вычёркивать из своей жизни вечера на диване и вредную еду всё-таки не стоит, ведь такая встряска скорее всего приведёт к стрессам, которые также могут отразиться на эпигенетике. Главное, чтобы «вредности» не стали образом жизни или укоренившейся привычкой. Эпигенетика, как маячок в бурном море жизни, показывает нам, что наш организм проходит порой через критические периоды развития, когда эпигены чувствительны к раздражителям из внешней среды. Именно поэтому женщине, ждущей ребёнка, обязательно надо регулярно принимать фолиевую кислоту и оберегать себя от стрессов и негативных ситуаций.

A. and others. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, pp 360-364, 19 February 2015. http:// biochemies. com

4612 0

В последние годы медицинская наука все чаще переключает свое внимание с изучения генетического кода на таинственные механизмы, при помощи которых ДНК реализовывает свой потенциал: упаковывается и взаимодействует с протеинами наших клеток.

Так называемые эпигенетические факторы наследуемы, обратимы и играют колоссальную роль в сохранении здоровья целых поколений.

Эпигенетические изменения в клетке могут запускать рак, неврологические и психические заболевания, аутоиммунные нарушения – неудивительно, что эпигенетика приковывает внимание врачей и исследователей из разных областей.

Недостаточно, чтобы в ваших генах была закодирована правильная последовательность нуклеотидов. Экспрессия каждого гена – это невероятно сложный процесс, который требует идеальной координации действий сразу нескольких молекул-участников.

Эпигенетика создает для медицины и науки дополнительные проблемы, в которых мы только начинаем разбираться.

Каждая клеточка нашего тела (за немногими исключениями) содержит одну и ту же ДНК, подаренную родителями. Тем не менее, не все части ДНК могут одновременно быть активными. В клетках печени работают одни гены, в клетках кожи другие, в нервных клетках третьи – именно поэтому наши клетки разительно отличаются друг от друга и имеют собственную специализацию.

Эпигенетические механизмы гарантируют, что в клетке определенного типа будет работать код, присущий только этому типу.

На протяжении человеческой жизни те или иные гены могут «спать» или внезапно активироваться. На эти малопонятные изменения влияют миллиарды жизненных событий – переезд в новую местность, развод с женой, посещение спортзала, похмелье или испорченный бутерброд. Практически все события в жизни, большие и маленькие, способны отразиться на активности тех или иных генов внутри нас.

Определение эпигенетики

На протяжении многих лет слова «эпигенезис» и «эпигенетика» использовалось в самых разных областях биологии, и лишь сравнительно недавно ученые пришли к консенсусу, установив их окончательное значение. Только в 2008 году на встрече в Колд-Спринг-Харбор с путаницей было покончено раз и навсегда – было предложено официальное определение эпигенетики и эпигенетических изменений.

Эпигенетические изменения - это наследуемые изменения в экспрессии генов и фенотипе клетки, которые не затрагивают последовательности самой ДНК. Под фенотипом понимают всю совокупность характеристик клетки (организма) – в нашем случае это и структура костной ткани, и биохимические процессы, интеллект и поведение, оттенок кожи и цвет глаз и т.д.

Конечно, фенотип организма зависит от его генетического кода. Но чем дальше ученые углублялись в вопросы эпигенетики, тем очевиднее становилось, что некоторые характеристики организма наследуются через поколения без изменений генетического кода (мутаций).

Для многих это стало откровением: организм может меняться без изменения генов, и передавать эти новые черты потомкам.

Эпигенетические исследования последних лет доказали, что факторы окружающей среды – проживание среди курильщиков, постоянные стрессы, неправильное питание – могут привести к серьезным сбоям в функционировании генов (но не в их структуре), и что эти сбои легко передаются будущим поколениям. Хорошая новость в том, что они обратимы, и в каком-то N-ном поколении могут раствориться без следа.

Чтобы лучше понять силу эпигенетики, представим себе нашу жизнь в виде длинного кино.

Наши клетки – актеры и актрисы, а наша ДНК – это заранее подготовленный сценарий, в котором каждое слово (ген) дает актерскому составу нужные команды. В этой картине эпигенетика – режиссер. Сценарий может быть одним и тем же, но режиссер наделен властью удалять определенные сцены и фрагменты диалогов. Так и в жизни, эпигенетика решает, что и как скажет каждая клеточка нашего огромного тела.

Эпигенетика и здоровье

Метилирование, изменения в белках-гистонах или нуклеосомах («упаковщиках ДНК») могут наследоваться и приводить к болезням.

Наиболее изученным аспектом эпигенетики является метилирование. Это процесс присоединения метильных (СН3-) групп к ДНК.

Обычно метилирование влияет на транскрипцию генов – копирование ДНК на РНК, или первый шаг в репликации ДНК.

Исследование 1969 года впервые показало, что метилирование ДНК способно изменить долговременную память индивидуума. С того момента роль метилирования в развитии многочисленных заболеваний стала более понятной.

Заболевания иммунной системы

Собранные за последние годы факты говорят нам о том, что утрата эпигенетического контроля над сложными иммунными процессами может привести к аутоиммунным заболеваниям. Так, аномальное метилирование в Т-лимфоцитах наблюдают у людей, страдающих волчанкой – воспалительным заболеванием, при котором иммунная система поражает органы и ткани хозяина.

Другие ученые уверены, что метилирование ДНК – это истинная причина развития ревматоидного артрита.

Нейропсихиатрические заболевания

Некоторые психические болезни, расстройства аутистического спектра и нейродегенеративные заболевания связаны с эпигенетическим компонентом. В частности, с ДНК-метилтрансферазами (DNMT) – группой ферментов, передающих метильную группу на нуклеотидные остатки ДНК.

Уже практически доказана роль метилирования ДНК в развитии болезни Альцгеймера. Крупное исследование выявило, что даже при отсутствии клинических симптомов гены нервных клеток у больных, склонных к болезни Альцгеймера, метилированы иначе, нежели в нормальном мозге.

Теория о роли метилирования в развитии аутизма была предложена давно. Многочисленные вскрытия с изучением мозга больных людей подтверждают, что в их клетках недостаточно протеина MECP2 (метил- CpG-связывающий белок 2). Это исключительно важная субстанция, связывающая и активирующая метилированные гены. В отсутствие MECP2 нарушается работа головного мозга .

Онкологические заболевания

Достоверно известно, что рак зависит от генов. Если до 80-х годов полагали, что дело только в генетических мутациях, то теперь ученые знают о роли эпигенетических факторов в возникновении, прогрессировании рака, и даже в его устойчивости к лечению.

В 1983 году рак стал первой болезнью человека, которую связали с эпигенетикой. Тогда ученые обнаружили, что клетки колоректального рака гораздо меньше метилированы, чем нормальные клетки кишечника. Нехватка метильных групп приводит к нестабильности в хромосомах, и запускается онкогенез. С другой стороны, избыток метильных групп в ДНК «усыпляет» некоторые гены, ответственные за подавление рака.

Поскольку эпигенетические изменения обратимы, то дальнейшие исследования открыли дорогу к инновационной терапии рака.

В оксфордском журнале Carcinogenesis от 2009 года ученые писали: «Тот факт, что эпигенетические изменения, в отличие от генетических мутаций, потенциально обратимы и могут быть восстановлены до нормального состояния, делает эпигенетическую терапию перспективной опцией».

Эпигенетика все еще является молодой наукой, но благодаря многогранному влиянию эпигенетических изменений на клетки, ее успехи уже сегодня поражают воображение. Жаль, что не ранее чем через 30-40 лет наши потомки смогут полностью осознать, как много она значит здоровья человечества.

: магистр фармации и профессиональный медицинский переводчик




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top