Генетические рекомбинации. Трансдукция

Генетические рекомбинации. Трансдукция

Тема: Генетика микроорганизмов 1. Конъюгация, трансдукция, трансформация. 2. Изменчивость микроорганизмов. 3. Использование достижений генетики бактерий.

Наследственный аппарат бактерий имеет ряд особенностей: бактерии - гаплоидные организмы, т. е. они имеют 1 хромосому. В связи с этим при наследовании признаков отсутствует явление доминантности; бактерии обладают высокой скоростью размножения, в связи с чем за короткий промежуток времени (сутки) сменяется несколько десятков поколений бактерий. Это дает возможность изучать огромные по численности популяции и достаточно легко выявлять даже редкие по частоте мутации. Наследственный аппарат бактерий представлен хромосомой. У бактерий она одна. Хромосома бактерий - это молекула ДНК. Длина этой молекулы достигает 1, 0 мм и, чтобы "уместиться" в бактериальной клетке, она не линейная, как у эукариотов, а суперспирализована в петли и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране. На бактериальной хромосоме располагаются отдельные гены. У кишечной палочки, например, их более 2 тыс.

2. Функциональными единицами генома бактерий, кроме хромосомных генов, являются: IS-последовательности; транспозоны; плазмиды. IS-последовательности (англ. insertion - вставка, sequence - последовательность)- короткие фрагменты ДНК. Они не несут структурных (кодирующих тот или иной белок) генов, а содержат только гены, ответственные за транспозицию (способность IS-последовательностей перемещаться по хромосоме и встраиваться в различные ее участки). ISпоследовательности одинаковы у разных видов бактерий. Транспозоны - это молекулы ДНК, более крупные, чем IS последовательности. Помимо генов, ответственных за транспозицию, они содержат и структурный ген, кодирующий тот или иной признак. Транспозоны (Tn-элементы) состоят из 2000 -25 000 пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два концевых ISэлемента. Каждый транспозон обычно содержит гены, привносящие важные для бактерии характеристики типа множественной устойчивости к антибактериальным агентам. В общем, для транспозонов характерны те же гены, что и для плазмид (гены устойчивости к антибиотикам, токсинообразования, дополнительных ферментов метаболизма). Транспозоны легко перемещаются по хромосоме. Их положение сказывается на экспрессии как их собственных структурных генов, так и соседних хромосомных. Транспозоны могут существовать и вне хромосомы,

Плазмиды - кольцевые суперспиралевидные молекулы ДНК. Их молекулярная масса колеблется в широких пределах и может быть в сотни раз больше, чем у транспозонов. Плазмиды содержат структурные гены, наделяющие бактериальную клетку разными, весьма важными для нее свойствами: R-плазмиды - лекарственной устойчивостью; Col-плазмиды - способностью синтезировать колицины; F-плазмиды - передавать генетическую информацию; Тох-плазмиды - синтезировать токсин; Плазмиды биодеградации - разрушать тот или иной субстрат и т. д. Плазмиды могут быть интегрированы в хромосому (в отличие от ISпоследовательностей и транспозонов, встраиваются в строго определенные участки), а могут существовать автономно. В этом случае они обладают способностью к автономной репликации, и именно поэтому в клетке может быть 2, 4, 8 копий такой плазмиды. Многие плазмиды имеют в своем составе гены трансмиссивности и способны передаваться от одной клетки к другой при конъюгации (обмене генетической информацией). Такие плазмиды называются трансмиссивными.

У бактерий различают 2 вида изменчивости - фенотипическую и генотипическую. Фенотипическая изменчивость - модификация - не затрагивает генотип, но затрагивает большинство особей популяции. Модификации не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу через большее (длительные модификации) или меньшее (кратковре менные модификации) исло поколений. ч Генотипическая изменчивость затрагивает генотип. В ее основе лежат мутации и рекомбинации. Мутации бактерий принципиально не отличаются от мутаций эукариотических клеток. Особенностью мутаций у бактерий является относительная легкость их выявления, так как имеется возможность работать с большими по численности популяциями бактерий. По происхождению мутации могут быть: спонтанными; индуцированными. По протяженности: точечными; генными; хромосомными. По направленности: прямыми; - обратными.

Рекомбинации (обмен генетическим материалом) у бактерий отличаются от рекомбинаций у эукариот: у бактерий имеется несколько механизмов рекомбинаций; при рекомбинациях у бактерий образуется не зигота, как у эукариот, а мерозигота (несет полностью генетическую информацию реципиента и часть генетической информации донора в виде дополнения); у бактериальной клетки-рекомбината изменяется не только качество, но и количество генетической информации.

Конъюгация У бактерий - способ переноса генетического материала от одной бактериальной клетки к другой. При этом две бактерии соединяются тонким мостиком, через который из одной клетки (донора) в другую (реципиент) переходит отрезок нити дезоксирибонуклеиновой кислоты (ДНК). Наследственные свойства реципиента изменяются в соответствии с количеством генетической информации, заключённой в переданном кусочке ДНК.

Конъюгация Конъюгация (от лат. conjugatio - соединение), парасексуальный процесс - однонаправленный перенос части генетического материала (плазмид, бактериальной хромосомы) при непосредственном контакте двух бактериальных клеток. Открыт в 1946 году Дж. Ледербергом и Э. Тайтемом. Имеет большое значение в природе, поскольку способствует обмену полезными признаками при отсутствии истинного полового процесса. Из всех процессов горизонтального переноса генов конъюгация позволяет передавать наибольшее количество генетической информации.

Конъюгация - обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту при их прямом контакте. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше контакт, тем большая часть донорской ДНК может быть передана реципиенту. Основываясь на прерывании конъюгации через определенные промежутки времени, можно определить порядок расположения генов на хромосоме бактерий - построить хромосомные карты бактерий (произвести картирование бактерий). Донорской функцией обладают F+-клетки.

Трансдукция Эстер Ледерберг удалось выделить бактериофаг лямбда, ДНК вирус, из Escherichia coli K 12 в 1950 году. Собственно открытие трансдукции связано с именем Джошуа Ледерберга. В 1952 году они совместно с Нортоном Циндером обнаружили общую трансдукцию. В 1953 Ледербергом и др. было показано существование абортивной трансдукции, в 1956 - специфической.

Трансдукция- обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту с помощью умеренных (трансдуцирующих) бактериофагов. Трансдуцирующие фаги могут переносить 1 или более генов (признаков). Трансдукиия бывает: специфической - переносится всегда один и тот же ген; неспецифической - передаются разные гены. Это связано с локализацией трансдуиируюших фагов в геноме донора: в случае специфической трансдукции они располагаются всегда в одном месте хромосомы; при неспецифической их локализация непостоянна.

Рис. 2. Трансдукция 1 - бактерия - донор (В+), 2 - фаг, 3 - размножение, 4 - адсорбция, 5 - бактерия - реципиент (В-), 6 - бактерия – реципиент с новым свойством.

Трансформация - это обмен генетической информацией у бактерий путем введения в бактериальную клетку реципиент готового препарата ДНК (специально приготовленного или непосредственно выделенного из клетки-донора). Чаще всего передача генетической информации происходит при культивировании реципиента на питательной среде, содержащей ДНК донора. Для восприятия донорской ДНК при трансформации клеткареципиент должна находиться в определенном физиологическом состоянии (компетентности), которое достигается специальными методами обработки бактериальной популяции или возникает спонтанно. При трансформации передаются единичные (чаще 1) признаки. Трансформация является самым объективным свидетельством связи ДНК или ее фрагментов с тем или иным фенотипическим признаком, поскольку в реципиентную клетку вводится чистый препарат ДНК.

Рис. 3. Трансформация капсульный штамм бактерии (1) при посеве дает рост (6). После кипячения этой культуры рост отсутствует (7). Аналогичен результат такого опыта с бескапсульным штаммом (4 -рост +, 8 -рост -). Объединение в одну емкость экстракта касульного (1) и живой культуры бескапсульного (3) штаммов с последующим высевом дает рост капсульного штамма (5).

Свойства клеток колоний S – и R- форм S-форма R-форма Колонии шероховатые, непрозрачные с неровными краями, часто морщинистые Жгутики часто отсутствуют Капсулы или слизистый слой отсутствует Биохимически менее активны Слабовирулентные или авирулентные Неполноценны в антигенном отношении Слабочувствительны к фагу Взвесь быстро оседает, осадок крошковидный, клетки полиморфные Колонии прозрачные, с гладкой блестящей поверхностью, круглые, с ровными краями, выпуклые Подвижные виды имеют жгутики У капсульных видов хорошо видна капсула или слизистый слой Биохимически более активны У патогенных видов выражены вирулентные свойства Полноценны в антигенном отношении Чувствительны к фагу Взвесь клеток в физиологическом растворе гомогенная, стойкая, клетки нормальных размеров

Рекомбинация – совокупность процессов, связанных с замещением участка исходной нуклеиновой кислоты на гомологичный (сходный) участок.

При этом степень гомологии может быть различной: от полной идентичности исходной и новой нуклеотидных последовательностей до заметных расхождений, приводящих к изменению фенотипа. В результате рекомбинации образуются новые сочетания аллелей, например: AB + ab → Ab + aB.

У прокариот существует три способа включения в геном чужеродной ДНК: трансформация, конъюгация и трансдукция.

Трансформация

Трансформацией называется перенос чистой ДНК из одних клеток в другие. Трансформация была открыта бактериологом Ф. Гриффитсом в 1928 г. в опытах с пневмококками. У пневмококков известно два типа штаммов: S– и R–формы.

S–форма характеризуется наличием полисахаридной капсулы, благодаря чему при искусственном культивировании она образует гладкие блестящие колонии; эта форма патогенна для мышей. R–форма не имеет капсулы, при искусственном культивировании она образует шероховатые колонии; эта форма непатогенна для мышей. Но если мышам одновременно ввести убитые S-клетки и живые R-клетки, то мыши погибают. Следовательно, генетические свойства одного штамма влияют на генетические свойства другого штамма.

В 1944 г. О. Эвери, К. МакЛеод и М. МакКарти доказали, что изменение наследственных свойств клеток связано с переносом ДНК.

Способность клетки к трансформации возможна при особом ее состоянии, которое называется компетентностью. У компетентных клеток изменяется состав клеточной стенки и плазмалеммы: стенка становится пористой, плазмалемма образует многочисленные впячивания, а на внешней поверхности появляются особые антигены – факторы компетентности (в частности, специфические белки с низкой молекулярной массой).

В природных условиях внеклеточная чистая ДНК образуется при гибели (лизисе) прокариот.

Как правило, трансформация происходит в пределах одного вида прокариот, но при наличии гомологичных генов наблюдается и межвидовая трансформация.

Процесс трансформации включает следующие стадии:

1. Присоединение трансформирующей двунитевой ДНК к рецепторам на поверхности клетки–реципиента.

2. Превращение двунитевой ДНК в однонитевую.

3. Проникновение однонитевой ДНК в клетку.

4. Интеграция трансформирующей ДНК в хромосому реципиента и рекомбинация генетического материала.

Длина трансформирующей ДНК должна быть от 500 до 200 тысяч пн. Энергия, выделяющаяся при деградации одной из нитей ДНК, используется для активного транспорта оставшейся нити вовнутрь клетки.

Первые три стадии трансформации не зависят от нуклеотидного состава ДНК. Однако процесс интеграции трансформирующей ДНК в хромосому реципиента более вероятен при высокой гомологичности этой ДНК по отношению к ДНК реципиента.


Процесс трансформации изображен на схеме. Каждый отрезок прямой соответствует одной цепи ДНК. Трансформирующая ДНК обозначена черным цветом, а ДНК клетки–реципиента – серым цветом.

На первой стадии трансформирующая ДНК присоединяется к рецепторным сайтам на поверхности клетки–реципиента.

На втором этапе двунитевая ДНК на поверхности клетки превращается в однонитевую за счет расщепления одной из нитей бактериальными нуклеазами.

На третьем этапе оставшаяся нить ДНК транспортируется через мембрану в цитоплазму. При этом используется энергия, выделившаяся при деградации комплементарной цепи.

При репликации бактериальной хромосомы трансформирующая нить ДНК присоединяется к гомологичному (частично комплементарному) участку ДНК клетки–реципиента. При этом из-за отсутствия полной комплементарности образуется гетеродуплекс («молекулярная гетерозигота») – участок двунитевой ДНК, на котором не во всех нуклеотидных парах азотистые основания связаны водородными связями. Остальная часть ДНК реплицируется нормальным образом.

После окончания репликации ДНК клетка–реципиент делится с образованием двух клеток: частично трансформированной клетки с хромосомой, включающей гетеродуплексный участок ДНК, и нетрансформированной клетки. При репликации ДНК в частично трансформированной клетке на обеих цепях ДНК происходит достраивание комплементарных цепей. Одна цепь сохраняет исходные последовательности нуклеотидов, а другая становится полностью трансформированной. После деления частично трансформированной клетки образуется одна нетрансформированная клетка и одна полностью трансформированная, у которой исходная последовательность нуклеотидов замещена на последовательность нуклеотидов трансформирующей ДНК.

Таким образом, при трансформации происходит замещение генов реципиента на гомологичные нуклеотидные последовательности. Чем выше степень гомологии, тем успешнее протекает трансформация.

Частота трансформации у прокариот зависит от свойств трансформирующей ДНК, от ее концентрации, от состояния клетки–реципиента, от вида бактерий. Максимальная частота трансформированных клеток не превышает 1 на 100 клеток.

Трансформация известна и для эукариот. Однако на поверхности эукариотических клеток отсутствуют рецепторные сайты, и трансформирующую ДНК вводят в клетки искусственно. Например, в яйцеклетки животных ДНК вводят путем прямой микроинъекции, а в яйцеклетки растений – путем микроинъекции в пыльцевую трубку. Широко используются методы биобаллистики (биолистики), позволяющие вводить любые фрагменты ДНК в культуры тканей растении.

Конъюгация

Конъюгацией у прокариот называется прямой контакт двух разнокачественных клеток, сопровождаемый хотя бы частичным переносом генетического материала от клетки-донора к клетке-реципиенту. (Процесс конъюгации был открыт в 1946 г. Дж. Ледербергом и Э. Татумом).

У кишечной палочки клетка-донор («мужская») имеет продолговатую форму, клетка-реципиент («женская») – изодиаметрическую. Клетка-донор образует половые ворсинки (пили), которые притягивают ее к клетке-реципиенту и образуют цитоплазматические каналы. По этим каналам ДНК из клетки-донора переходит в клетку-реципиент. Существует три типа клеток-доноров: F + (эф–плюс), Hfr (эйч–эф–а) и F ′ (эф–прим).

F + -доноры содержат в цитоплазме половой фактор – специфическую F–плазмиду.

F–плазмида – это автономный репликон длиной около 100 тпн. В составе F–плазмиды изучено более 20 генов. Примерно половина из них образует гигантский оперон tra (длиной около 30 тпн); продукты этого оперона контролируют образование контакта между донором и реципиентом и собственно перенос ДНК. Остальные гены регулируют работу tra–оперона.

Клетка-реципиент не содержит F–плазмиды и обозначается как F – –клетка.

При образовании цитоплазматического мостика одна из цепей F–плазмиды надрезается в определенной точке (точка О), а на комплементарной цепи начинается репликация ДНК по принципу «катящегося кольца». Копия комплементарной цепи по цитоплазматическому мостику переходит в цитоплазму клетки–реципиента, и на ней достраивается недостающая цепь. После окончания репликации двунитевая плазмидная ДНК замыкается в кольцо, и F – –клетка превращается в F + –клетку. Полное время переноса копии F–плазмиды в клетку–реципиент составляет примерно 5 минут.

Однако при скрещивании F + × F – в клетку–реципиент попадают только гены, содержащиеся в F –плазмиде; гены домашнего хозяйства, локализованные в бактериальной хромосоме, в клетку–реципиент не переносятся.

В то же время F–плазмида может встраиваться в бактериальную хромосому, то есть переходить в интегрированное состояние. В бактериальной хромосоме имеется около 20 сайтов интеграции F–плазмиды. Тогда при переносе копии одной из цепей F–плазмиды в клетку–реципиент за ней увлекается и копия одной из цепей бактериальной хромосомы. Клетки с интегрированной F–плазмидой называются Hfr–доноры (от англ. «высокая частота рекомбинаций»). В зависимости от условий возможен полный или частичный перенос копии бактериальной хромосомы Hfr–донора в цитоплазму реципиента. В результате образуется клетка с одной исходной двунитевой бактериальной хромосомой и одной полной или неполной гомологичной однонитевой молекулой ДНК. Такая клетка называется мерозигота («частичная зигота»). Далее при репликации ДНК протекает рекомбинация. Этот процесс принципиально не отличается от рекомбинации при трансформации.

Перенос копии ДНК начинается примерно с середины F–плазмидной ДНК (с точки О, в которой одна из цепей ДНК надрезается, и начинается репликация F–плазмидной ДНК). Таким образом, половина F–плазмидной ДНК проникает в клетку–реципиент в начале конъюгации, а вторая половина – только после полного переноса копии хромосомной ДНК. Для полного завершения этого процесса при t = 37 0 С требуется более 100 минут. Однако в природных условиях конъюгация прерывается значительно раньше, в клетку–реципиент переходит только часть копии хромосомы донора и только первая половина F–плазмидной ДНК. Таким образом, клетка-реципиент не принимает свойства Hfr–донора.

Однако существуют штаммы бактерий, у которых копия бактериальной хромосомы вместе с копией F–плазмидной ДНК переносится полностью. Такие клетки называются vHfr–доноры (от англ. «очень высокая частота рекомбинаций»).

Вероятность переноса определенного гена в клетку–реципиент зависит от его удаления от F–плазмидной ДНК, а точнее, от точки О, в которой начинается репликация F–плазмидной ДНК. Чем больше время конъюгации, тем выше вероятность переноса данного гена. Это дает возможность составить генетическую карту бактерий в минутах конъюгации. Например, у кишечной палочки ген thr (оперон из трех генов, контролирующих биосинтез треонина) находится в нулевой точке (то есть непосредственно рядом с F–плазмидной ДНК), ген lac переносится через 8 мин, ген recE – через 30 мин, ген argR – через 70 мин и т.д.

F–плазмида может переходить из интегрированного состояния в автономное путем самовырезания из бактериальной хромосомы. В этом случае возможен захват и части хромосомной ДНК (до 50 % хромосомных генов). F–плазмида, включающая хромосомные гены, называется F ′ –фактором. Перенос генетического материала при скрещиваниях F ′ × F – называется сексдукция.

Кроме F–плазмиды у прокариот известны и другие типы половых факторов (R, Ent, Hly, Col), обеспечивающих перенос генетического материала от бактерии к бактерии. На основе природных плазмид (в том числе ДНК хлоропластов и митохондрий) получены полусинтетические молекулы ДНК, обеспечивающие перенос генетического материала из одной клетки в другую, называются векторы. Векторы должны обеспечивать не только устойчивый перенос генов, но и регуляцию их транскрипции.

Прокариотические плазмиды могут реплицироваться только в прокариотических клетках. В то же время, существует необходимость переноса генов от эукариот к прокариотам и наоборот. Для этого используются челночные плазмиды, которые содержат два репликатора (прокариотический и эукариотический) и способны реплицироваться и в прокариотических, и в эукариотических клетках, например, Ti– и Ri–плазмиды, способные к репликации в прокариотических и растительных клетках, и полусинтетические векторы, созданные на их основе. Для защиты векторов от разрушения нуклеазами их заключают в фосфолипидные пузырьки – липосомы.

Трансдукция

Трансдукцией называется перенос генетического материала с помощью вирусов из клетки-донора в клетку-реципиент. (Явление трансдукции открыл в 1951 г. Н. Зиндер (ученик Дж. Ледерберга)).

При трансдукции в вирионы попадает ДНК клетки-хозяина. Вирионы заражают другие клетки, и ДНК исходной бактериальной клетки проникает в другую бактериальную клетку. Вирусная ДНК интегрируется в бактериальную хромосому, а привнесенная бактериальная ДНК рекомбинирует с ДНК бактериальной хромосомы. В результате 50% клеток оказываются трансформированными.

Различают общую (неспецифическую), ограниченную (специфическую) и абортивную трансдукцию.

Общая трансдукция

При общей трансдукции фрагменты бактериальной ДНК донора случайно включаются в созревающую фаговую частицу вместе с фаговой ДНК или вместо фаговой ДНК. Фрагменты бактериальной ДНК образуются при ее разрезании ферментом, контролируемым фагом. В состав фаговой частицы может включаться до 100 бактериальных генов.

Ограниченная трансдукция

При ограниченной трансдукции происходит рекомбинация – бактериальная ДНК замещает часть фаговой ДНК. В состав рекомбинантной ДНК входит небольшое количество бактериальных генов, прилежащих к фаговой ДНК, интегрированной в бактериальную хромосому.

При общей и ограниченной трансдукции донорская ДНК замещает гомологичные участки ДНК реципиента. Этот процесс сходен с трансформацией.

Абортивная трансдукция может быть и неспецифической, и специфической. Ее сущность заключается в том, что трансдуцируемый фагом фрагмент ДНК не включается в хромосому реципиента, а существует как цитоплазматический репликон. Рано или поздно этот репликон утрачивается.

Явление трансдукции вирусами широко используется при переносе генов у эукариот. Если применяется вирус, неспособный формировать капсид (то есть существующий только в форме ДНК), то трансдукция принципиально не отличается от трансформации или от конъюгативного переноса генетического материала с помощью плазмид–векторов. Созданы системы векторов на основе модифицированных вирусов SV40 (они образуют в клетке до 100 тысяч копий), герпеса, осповакцины, вирус мозаики цветной капусты.

Следует еще раз подчеркнуть, что все описанные типы рекомбинации связаны не с добавлением новых участков ДНК, а с замещением уже имеющихся нуклеотидных последовательностей. Чем выше степень гомологии трансформирующей и исходной ДНК, тем выше вероятность успешной рекомбинации. Легче всего удается рекомбинация ферментов, имеющихся у всех организмов. Труднее ввести в геном новые регуляторы, отличающиеся высокой специфичностью. Поэтому для внедрения в геном новых генов используются более сложные методы, связанные с биохимическими модификациями ДНК.

Тема 7: Цитоплазматическое наследование. Генетика соматических клеток и тканей.

1. Цитоплазматическое наследование. Генетический материал полуавтономных органоидов. Пластидное наследование. Наследование через митохондрии. Цитоплазматическая мужская стерильность

2. Особые типы наследования. Предетерминация цитоплазмы. Наследование через инфекцию и эндосимбионтов

3. Генетика соматических клеток. Соматические мутации. Химеры. Генетика онкологических заболеваний.

Трансформация - изменение наследственных свойств клетки в результате проникновения или искусственного привнесения в нее чужеродной ДНК. Природу трансформирующего фактора установили Эвери, Мак-Леод в 1944. Трансформировать удается только те бактерии, в клетки которых может проникнуть высокомолекулярная, двуХцепочечная (интактная) ДНК. Способность поглощать ДНК – компетенция, и зависит от физиологического состояния клетки. ДНК может поглощаться в определенную короткую фазу изменения клеточной поверхности. С помощью ДНК могут передаваться такие признаки как: капсулообразование, синтез в-в, ферментативная активность, устойчивость к ядам, антибиотикам.. Любая ДНК может проникнуть в компетентную клетку, но рекомбинация роисходит только ДНК родственного вида. Конъюгация - перенос генетического материала путем прямого контакта между 2 клетками. Исследовали Ледерберг и Татум в 1946 на мутантах Кишечной палочки. Один мутант уждался в аминокислотах А и В, но был способен синтезировать Си Д, второй был ему компетентен (А-В-С+Д+). Эти мутанты не росли и не образовывали колоний на минимальной, питательной среде, но если внести на нее суспензию обоих мутантов, то колонии появлялись. Клетки этих колоний обладали наследственной способностью синтезировать все аминокислоты (А+В+С+Д+).Здесь предпосылкой рекомбинации служит конъюгация. При исследовании бактерий выяснили, что способность клетки быть донором связана с наличием фактора F (F +клетки, не содержащие фактора – F- и может функционировать, как реципиент) – плазмида, кольцевая, двухцепочечная молекула ДНК. Т.о. клетки реципиенты в результате конъюгации становятся донорами, а хромосомные признаки не передаются. F-плазмида обуславливает образование на клетке половых фимбрий/ F-пили, которые служат для узнавания при контакте м/у клеткой донором и клеткой реципиентом и делают возможным образование мостика, по которому ДНК переходит в клетку. Конъюгация распространена у энтеробактерий, прокариот. Трансдукция - пассивный перенос бактериальных генов из одной клетки в другую частицами бактериофага, что приводит к изменению наследственных свойств клетки. Различают 2 вида трансдукции: а) Неспецифический - при котором может быть перенесен любой фрагмент ДНК хозяина (ДНК клетки хозяина включается в частицу фага/ к его собственному гену/ вместо него) ; б) Специфический – может быть перенесен строго определенный фрагмент ДНК некоторые гены фага заменяются генами хозяина). В обоих случаях фаги дефектны, т.е. теряют способность лизировать клетку.

38. Факторы резистентности(r-факторы). Свойства плазмидов. Транспозоны.

1. Резистентность – устойч.орг-мов к каким-либо антигенам. Бактерии устойч.к некотор.антаибиотикам были откр. В 50-е годы в Японии(возбудители дезинтерии. Отмеч.множ.уст-ть бакт.дезинтерии и это может перед.др.бакт. R-факторы содержат гены, которые делают клетку устойчивой к некоторым антибиотикам. Некоторые R-факторы обуславливают резистентность сразу к 8 антибиотикам, а др. R-ф. придают уст-ть к тяж.мет.(ртуть, никель, кадмий) R-плазмида несёт 2 гр.генов:1)ген отв.за передачу плазмиды путём коньюгации(гены tra) и они обр.так назыв.»факторы переноса устойчивости(RTF), 2)гены котор.обусл.собственно резист-ть и они сост. Сост.лишь небольш.часть плазмиды.

RTF включ.все гены,ответств.за перенос фактора R из клетки в клетку, котор.осущ.путём коньюгации. Т.е фактор R также как и фактор F- инфекционен. Возможен перенос R-фактора между несколькими разными родами бактерий, что способств.их дальнейшему распр. Фермитативн.хим.модиф.антибиотиков явл.осн.причиной уст.к ним,обусл.плазмидами. Например канамицин и неомицин подверг.фосфорелиров-ю, а пинпиц.инактивиро.пеницилиназой. поск. При налич. R-факторов возможна генетт.рекомбинация, то может.возн.нов.сочет-е генов,котор.придадут.дополн.св-ва уст-ти. R-факторы имеют больш.знач-е для химио-терапии.

2. Бактериоцины . Многие бакт.синтез.белки,Юкотор. Убив.родств.виды или штаммы или тормозят их рост. Эти белки назыв-ся бактериоцинами. Они кодир. Особ.плазмидами, котор.назыв.бактериоциногенными факторами. Бактериоцины были выделены из эшрихиа коли(колицины) и др.бакт. Назв-е бактериоцинам даётся по продуцир.форме бакт.,напр.стафилококи произв.стафилоцины. неорг.в-ва, убив.бакт.назыв.антисептиками.

3. Др.призн., опр.плазмидами. Плазмиды могут содерж.гены,котор.обусл.ряд специф.биол.св-в,котор.в опр.усл-ях созд.селективное преимущество. Гены ферментов,необх.для расщепл-я камыфоры,салиц.к-ты и др.необ.субстратов могут наход.в плазмидах. Перечень св-в, наслед.с плазмидами, значит-й и включает: азотфиксацию,обр-е клубеньков, погл-е сахаров, синтез гидрогеназы и др. Некотор.из этих св-в могут опр.генами бактер. Хромасомы (обмен генами м-ду хромосомой и плазмидой). Плазмиды сыграли важн.роль в эвол.прокариотов.

4. Несовместимость. Многие бакт.содерж.плазмиды разл.велич. Сосущ.разн.плазмидов в одной клетке говорит о том, что такие плазмиды совместимы между собой. Но 2 родств.плазмиды не могут сосущ.в одной клетке,они несовместимы. Все плазмиды подр.на гр.несов-ти: плазмиды,отн.к одной и тойже группе несовм.

Транспозоны – это послед-ти ДНК,котор.способны встр.во мног.уч-ки генома и могут «перепр.»с плазмиды на бакт.хромосому,на др.плазмиду. Транспазоны содержат гены,котор.опр.внешнерасп.признаки,а именно уст-ть к таким антибиотикам как пиниц.,тетрациклин и др. В с вязи с этим их легче обнар., чем IS – Эл-ты (чужеродн.ДНК,предст.собой инсерцион.посл-ти встреч в бакт.хромосомах и плазмидах.). По обе стороны от генов уст-ти, котор.нах.внутри транспозона распол 2 одинаков посл-ти,котор.могут идти в одном и томже или противопол.напр-ях. Эти повт.посл-ти оснований ДНК частично идентичны с IS – Эл-тами.

41. Эволюция м/оов.

Кл-ки всего живого от примитивных форм до высоко организованных состоят из одних и тех же структурных элементов и исп одни и теже механизмы для получения энергии и роста. В этом заключается биохимическое единство всех живых организмов. В процессе эволюции происходило становление и формирование различных форм живого. Для процесса эволюции жизни необходимо предст какие условия были на Земле, в кот оказалось возможным самозарождение жизни. В послед после формирования Земли период на ней происх активные биологич процессы, кот меняли ее облик и приводили к формированию земной коры, гидросферы и атмосферы. Когда органич в-ва на Земле накопились в большом количестве=>возникли условия, при котором мог совершиться переход от химич эволюции к возникновению первых самовоспроизводящихся живых существ. Для клет жизни характерно, что она всегда предст в виде опред структур, кот пространственно обособленны от внешней среды, но постоянно взаимод с ней по типу отк систем. Предполаг, что след этапом эволюции на пути возникн жизни было формирование определенной структурной организации – абиогенносинтезированных органических соединений. Они имели сферическую форму, диаметр 0,5-7мкм, напоминали кокковидные формы бактерий, содержали протеиноиды, кот обладали определенной стабильностью. При окрашивании по грамму было обнаружено, что микросферы, образованные из кислых протеиноидов - гр-, а основными протеиноидами – гр+. Этот этап переходный этап от химической к биологической эволюции и возникшая закономерность может быть определена как предбиологический естественный отбор. В дальнейшем предпол, что первыми прокариотами, кот могли появиться в водоемах, где было много органич в-ва были организмы, кот сущ за счет брожения и обладавшими основными функциями анаэробного обмена. Если предположить, что в водоемах имелись тогда и сульфаты, то след этапом эволюц явл эффективный транспорт электронов с созданием протонного потенциала как источника энергии для регенерации АТФ. Кроме того, было экспериментально показано, что на начальн этапе эволюц прокариоты могли воспроизводиться и передавать информацию потомству без участия нуклеиновых кислот. Для дальнейшей эволюции прокариот было необходимо создание специального аппарата, кот бы обеспечивал точное воспр полипептидов. Это привело к формированию нового механизма синтеза – матричного синтеза, в основе которого лежит использование свойств полинуклеотидов. Свойством полинуклеиновых молекул является способность к точному воспроизведению, основанное на принципе структурной комплиментарности.

Главное событие в эволюции: переход от первичной восстанавливающей атмосферы к атмосфере, содержащей кислород. У бактерий появился новый тип метаболизма – аэробное дыхание, что стало возможно в результате превр цитохромов в терминальные оксидазы, используя молекулы О 2 в качестве акцептора электронов. Предполагают, что 2 млрд лет назад уже сущ все фототрофные прокариоты, кот изв и сейчас. Прокариоты первично занимали много различ экологич ниш, кот затем постепенно уступили эукариотам. Выработка разнообразных типов метаболизма у прокариот была обусловлена простой структурной клеткой, высокоразвитой системой регуляции, быстрым ростом, наличием неск механизмов переноса генов.

42.ПАТОГЕН МИКРООРГ И ИММУНИТЕТ.

Иммунитет защищает нас от инфекционных агентов: бактерий, вирусов и простейших, т. е. защищает организм от всего чужеродного.

Инфекция – сложный биологический процесс, возникающий в результате проникновения патогенных микробов в организм и нарушения постоянства его внутренней среды.

Патогенность – это способность микроба определенного вида при соответствующих условиях вызывать характерное для него инфекционное заболевание. Следовательно, патогенность есть видовой признак.

В природной среде встречаются биологические загрязнители, вызывающие у человека различные заболевания. Это болезнетворные микроорганизмы, вирусы, гельминты, простейшие. Они могут находиться в атмосфере, воде, почве, в теле других живых организмов, в том числе и в самом человеке.

Наиболее опасны возбудители инфекционных заболеваний. Они имеют различную устойчивость в окружающей среде. Одни способны жить вне организма человека всего несколько часов; находясь в воздухе, в воде, на разных предметах, они быстро погибают. Другие могут жить в окружающей среде от нескольких дней до нескольких лет. Для третьих окружающая среда является естественным местом обитания. Для четвертых - другие организмы, например дикие животные, являются местом сохранения и размножения.

Часто источником инфекции является почва, в которой постоянно обитают возбудители столбняка, ботулизма, газовой гангрены, некоторых грибковых заболеваний. В организм человека они могут попасть при повреждении кожных покровов, с немытыми продуктами питания, при нарушении правил гигиены.

Типичные антибиотики

Продуценты

На кого действует

Механизм действии

Трудности терапевтического применения

Пенициллины, це-фалоспорины

Грибы родов Ре nicillium , Cephalosporum

Грамположитель-ные и грамотрицательные бактерии

Нарушение синте­за клеточной стенки

Аллергические реакции

Стрептомицин, гентамицин, канамицин, тобрамицин, амикацин

Актиномицеты ро­да Streptomyces , бактерии родов Micromonospora . Bacil ­ lus

Необратимое подавление синтеза белка

Токсическое дейст­вие на слуховой нерв и почки

Одноименные антибиотики

Актиномицеты ро­да Streptomyces

Грамположительные и грамотрицательные бактерии, риккетсии, хламидии, простейшие

Обратимое подав­ление синтеза белка

Распространение устойчивых штаммов

Антибактериаль­ные: эритромицин Противогрибковые и антипротозойные: полиены

Актиномицеты ро­да Streptomyces То же

Грамположительные бактерии Грибы, некоторые простейшие

Нарушение плаз­матической мемб­раны

Токсичность

Полимиксины, грамицидины, бацитрацины

Различные микро-организмы

В основном грамотрицательные бак­терии

Механизм дейст­вия различен

Высокая токсичность

Рекомбинация у бактерий: трансформация, трансдукция, конъюгация.

Наименование параметра Значение
Тема статьи: Рекомбинация у бактерий: трансформация, трансдукция, конъюгация.
Рубрика (тематическая категория) Культура

Рекомбинации (обмен генетическим материалом) у бактерий отличаются от рекомбинаций у эукариот :

‣‣‣ у бактерий имеется несколько механизмов рекомбинаций;

‣‣‣ при рекомбинациях у бактерий образуется не зигота͵ как у эу­кариот, а мерозигота (несет полностью генетическую инфор­мацию реципиента и часть генетической информации донора в виде дополнения);

‣‣‣ у бактериальной клетки-рекомбината изменяется не только качество, но и количество генетической информации.

Трансформация - это обмен генетической информацией у бакте­рий путем введения в бактериальную клетку-реципиент готового препарата ДНК (специально приготовленного или непосредст­венно выделœенного из клетки-до нора). Чаще всœего передача генетической информации происходит при культивировании реципиента на питательной среде, содержащей ДНК донора. Для восприятия донорской ДНК при трансформации клетка-реципиент должна находиться в определœенном физиологиче­ском состоянии (компетентности), ĸᴏᴛᴏᴩᴏᴇ достигается специ­альными методами обработки бактериальной популяции.

При трансформации передаются единичные (чаще 1) признаки. Трансформация является самым объективным свидетельством связи ДНК или ее фрагментов с тем или иным фенотипическим признаком, поскольку в реципиентную клетку вводится чистый препарат ДНК.

Трансдукция - обмен генетической информацией у бактерий пу­тем передачи ее от донора к реципиенту с помощью умеренных (трансдуцирующих) бактериофагов.

Трансдуцирующие фаги могут переносить 1 или более генов (признаков).

Трансдукиия бывает :

‣‣‣ специфической - переносится всœегда один и тот же ген;

‣‣‣ неспецифической - передаются разные гены.

Это связано с локализацией трансдуиируюших фагов в геноме до­нора :

‣‣‣ в случае специфической трансдукции они располагаются всœе­гда в одном месте хромосомы;

‣‣‣ при неспецифической их локализация непостоянна.

Конъюгация - обмен генетической информацией у бактерий пу­тем передачи ее от донора к реципиенту при их прямом контакте. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше контакт, тем большая часть до­норской ДНК должна быть передана реципиенту.

Основываясь на прерывании конъюгации через определœенные промежутки времени, можно определить порядок расположе­ния генов на хромосоме бактерий - построить хромосомные карты бактерий (произвести картирование бактерий).

Донорской функцией обладают F + -клетки.

Рекомбинация у бактерий: трансформация, трансдукция, конъюгация. - понятие и виды. Классификация и особенности категории "Рекомбинация у бактерий: трансформация, трансдукция, конъюгация." 2017, 2018.

Генетические рекомбинации у эукариот - это образование индивидуумов с новым сочетанием признаков в результате полового процесса. Новая особь получает несколько генов от одного родителя и несколько от другого, генетически отличающегося родителя. Благодаря процессу рекомбинации увеличивается число наследственных изменений, на которые может воздействовать отбор.

У прокариот генетическая рекомбинация относится к так называемым парасексуальным процессам. У этих организмов известны три процесса, посредством которых генетический материал от двух различных родителей может рекомбинироваться. Это трансформация, конъюгация и трансдукция. Однако ни в одном из этих процессов не происходит истинного слияния клеток или полного слияния нуклеоидов. Лишь часть генетического материала клетки-донора передается клетке-реципиенту. Реципиент, таким образом, становится диплоидным, потому что часть его генетического материала дополняется генетическим материалом донора.

В такой неполной зиготе, называемой мерозиготой, сформированной в результате переноса генов, генетический материал реципиентной клетки называется эндогенным, а генетический фрагмент, переданный из донора,- экзогенным. Обычно экзогенная и эндогенная части соединяются и обмениваются сегментами немедленно после переноса.

Трансформация - это процесс переноса генов, при котором часть ДНК клетки-донора, полученная либо эстрагированием, либо при естественном лизисе клеток, может проникать в родственную (одного и того же вида или близкородственных видов) бактериальную клетку-реципиент. В результате происходит включение в ДНК реципиента фрагментов хромосомы ДНК донора, что обусловливает изменение признаков бактерии-реципиента.

Процесс трансформации можно подразделить на несколько стадий: 1 - контакт ДНК с поверхностью клетки; 2 - проникновение ДНК в клетку; 3 - соединение трансформирующей ДНК с соответствующим фрагментом хромосомы реципиента. Дальнейший процесс связан с рекомбинацией части экзогенной молекулы трансформирующей ДНК с реципиентной эндогенной хромосомной ДНК. Последняя стадия - репликация включенной в хромосому новой информации.

В лабораторных условиях трансформация осуществляется следующим образом. ДНК определенного штамма бактерий извлекают, очищают и смешивают с клетками бактерий другого штамма, отличающегося от первого одним или несколькими наследственными свойствами. Культуру подопытного микроорганизма оставляют расти. Среди потомства можно обнаружить небольшое количество клеток с некоторыми свойствами штамма, из которого была извлечена ДНК.

Очень редко бывает, что единичная бактериальная клетка приобретает в результате трансформации более чем одно новое свойство. Передача через ДНК большего числа признаков наблюдается лишь в том случае, если культура микроба-донора генетически близка к клеткам микроба-реципиента.

С помощью трансформирующей ДНК могут передаваться такие признаки, как капсулообразование, синтез необходимых клетке веществ, ферментативная активность, устойчивость к ядам, антибиотикам и другим лекарственным веществам.

Трансформацию наблюдали у многих бактерий, в частности у представителей родов Bacillus, Rhizobium, Streptococcus и др.

Конъюгация - процесс, при котором сблизившиеся родительские клетки соединяются обычно с помощью конъюгационных мостиков, через последние происходит обмен генетическим материалам. Конъюгацию исследовали у различных бактерий (Escherichia, Shigella, Salmonella, Pseudomonas), в частности она хорошо изучена у Escherichia coli.

Возможность клетки стать донором определяется специфическим половым фактором F (от англ. fertility - плодовитость), который при конъюгации переносится из одной бактериальной клетки в другую. Эти клетки были названы F+-клетками. Клетки бактерий, не имеющие F-фактора, являются реципиентами генетического материала и обозначаются F - Половой фактор F относится к числу конъюгативных плазмид и представляет собой циркулярно замкнутую молекулу ДНК с молекулярной массой 64х106 а. е.м. F-плазмида обусловливает образование на поверхности клетки одной или двух так называемых половых фимбрий, или F-pili, способствующих соединению клеток-доноров с клетками - реципиентами, а также независимую от хромосомы репликацию собственной ДНК и образование продуктов, которые обеспечивают перенос генетического материала как самой F-плазмиды, так и хромосомы клетки. F-плазмида располагается в цитоплазме автономно, вне бактериальной хромосомы. Однако она обладает способностью включаться (иитегрировать) в определенные места бактериальной хромосомы и становиться ее частью.

В результате интеграции F-плазмиды в состав бактериальной хромосомы образуется так называемый Hfr-штамм (High frequency of recombination - высокая частота рекомбинации). Когда происходит скрещивание Hfr-штамма с F - - бактериями, то, как правило, F - фактор не

Передается, а гены хромосомы бактерий передаются с довольно высокой частотой. В начале процесса конъюгации клетки-доноры F+ или Hfr соединяются с клетками-реципиентами (благодаря наличию у доноров F-pili). Впоследствии между клетками образуется конъюгационный мостик и через него, из клетки-донора в клетку-реципиент, передается генетический материал или F-плазмиды, или хромосомы. Обычно при конъюгации передается только одна цепь ДНК-донора, а вторая цепь (комплементарная) достраивается в клетке реципиента. Перенос, как правило, начинается с одного конца хромосомы и продолжается с последующим переносом других участков ее (рис. 21).

Переносу генетического материала можно препятствовать в любое время, разделяя конъюгирующие пары с помощью сильного встряхивания суспензии микроорганизмов, находящихся в жидкой среде. В этом случае только некоторые свойства мужских клеток переносятся в женскую клетку и могут проявиться в потомстве. Рано или поздно перенос прекращается в большинстве конъюгирующих пар и тогда, когда их искусственно не разделяют. Это происходит потому, что конъюгационный мостик непрочен и легко разрушается, не влияя на жизнеспособность клеток.

Таким образом, в результате конъюгации реципиентная клетка F - превращается в мерозиготу, содержащую из-за самопроизвольного прерывания переноса генетического материала только часть хромосомы-донора F+ в дополнение к собственной хромосоме. В результате процесса кроссинговера (перекрест хромосом, при котором гены меняются местами), наблюдающегося и у других организмов, образуется новая комбинация генетического материала. В зависимости от места расположения подвергающегося обмену генетического материала в потомстве могут возникнуть рекомбинанты разного типа.

Трансдукция - процесс переноса генетического материала от одной бактериальной клетки к другой посредством бактериофага. Другими словами, фаг при этом играет как бы роль гаметы, перенося в клетку - реципиент фрагмент ДНК клетки-донора. Трансдукция происходит при участии умеренных фагов.

Известны три главных типа трансдукции: общая (неспецифическая), локализованная (специфическая) и абортивная. При неспецифической трансдукции происходит передача различных фрагментов ДНК от бактерий-доноров к бактериям - реципиентам с помощью умеренных трансдуцирующих фагов. При этом принесенный фагом фрагмент ДНК донора способен включаться в гомологическую область ДНК клетки - реципиента путем рекомбинации.

Специфическая трансдукция характеризуется способностью фага переносить от бактерий - доноров к бактериям - реципиентам только определенные гены. Это обусловлено тем, что образование трансдуцирующего фага происходит в результате соединения его ДНК со строго определенными бактериальными генами, расположенными на хромосоме клетки-донора. Считают, что каждая частица фага переносит или только один бактериальный ген, или несколько близколежащих генов.

При Абортивной трансдукции принесенный фагом фрагмент хромосомы клетки - донора не включается в хромосому клетки-реципиента, а располагается в ее цитоплазме автономно и в таком виде может функционировать. В процессе деления клетки - реципиента трансдуцированный фрагмент ДНК - донора может передаваться только одной из двух дочерних клеток, то есть наследуется однолинейно, в связи, с чем утрачивается в потомстве.

При трансдукции возможен перенос генов, контролирующих питательные особенности бактерий, их устойчивость к лекарственным веществам, ферментативную активность, двигательный аппарат (жгутики) и другие свойства.

Перенос признаков с помощью процесса трансдукции обнаружен у представителей родов Bacillus, Pseudomonas, Salmonella, Escherichia и др.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top