Ли пи ды. Простые и сложные липиды

Ли пи ды. Простые и сложные липиды

Что такое липиды, какова классификация липидов, в чем состоит их строение и функции? Ответ на этот и многие другие вопросы дает биохимия, занимающаяся изучением этих и других веществ, имеющих большое значение для метаболизма.

Что это такое

Липиды представляют собой органические вещества, нерастворяемые в воде. Функции липидов в теле человека многообразны.

Липиды — это слово означает «мелкие частички жира»

Это прежде всего:

  • Энергетическая. Липиды служат субстратом для запасания и использования энергии. При расщеплении 1 грамма жиров выделяется примерно в 2 раза больше энергии, чем при расщеплении белка или углеводов такого же веса.
  • Структурная функция. Структура липидов определяет строение мембран клеток нашего тела. Они располагаются таким образом, что гидрофильная часть молекулы находится внутри клетки, а гидрофобная ─ на ее поверхности. Благодаря этим свойствам липидов каждая клетка, с одной стороны, представляет собой автономную систему, отгороженную от внешнего мира, а с другой ─ каждая клетка может обмениваться молекулами с другими и с окружающей средой с помощью специальных транспортных систем.
  • Защитная. Поверхностный слой, что имеется у нас на коже и служит своеобразным барьером между нами и окружающим миром также составлен из липидов. Кроме того, они в составе жировой ткани обеспечивают функцию теплоизоляции и защиту от пагубных внешних воздействий.
  • Регуляторная. Они входят в состав витаминов, гормонов и других веществ, регулирующих многие процессы в организме.

Общая характеристика липидов исходит из особенностей строения. Они обладают двоякими свойствами, так как имеют в составе молекулы растворимую и нерастворимую части.

Поступление в организм

Липиды частично поступают в организм человека с пищей, частично способны синтезироваться эндогенно. Расщепление основной части пищевых липидов происходит в 12-перстной кишке под воздействием панкреатического сока, выделяемого поджелудочной железой и желчных кислот в составе желчи. Расщепившись, они ресинтезируются вновь в кишечной стенке и, уже в составе специальных транспортных частиц ─ липопротеинов, ─ готовы поступить в лимфатическую систему и общий кровоток.

С пищей ежедневно человеку необходимо получать около 50-100 граммов жиров, что зависит от состояния организма и уровня физической активности.

Классификация

Классификация липидов в зависимости от их способности образовывать мыла в определенных условиях разделяет их на следующие классы липидов:

  • Омыляемые. Так называются вещества, которые в среде с щелочной реакцией образуют соли карбокислот (мыла). В эту группу относятся простые липиды, сложные липиды. Как простые липиды, так и сложные важны организму, они имеют разное строение и, соответственно ему, липиды выполняют разные функции.
  • Неомыляемые. В щелочной среде не образуют солей карбоновых кислот. Сюда биологическая химия относит жирные кислоты, производные полиненасыщенных жирных кислот ─ эйкозаноиды, холестерин, как наиболее яркий представитель основного класса стеринов-липидов, а также производные его ─ стероиды и некоторые другие вещества, например, витамины А, Е и др.

Общая классификация липидов

Жирные кислоты

Веществами, которые относятся к группе так называемых простых липидов и имеют большое значение для организма являются жирные кислоты. В зависимости от наличия двойных связей в неполярном (нерастворимом в воде) углеродном «хвосте», жирные кислоты делят на насыщенные (двойных связей не имеют) и ненасыщенные (имеют одну или даже больше двойных углерод-углеродных связей). Примеры первых: стеариновая, пальмитиновая. Примеры ненасыщенных и полиненасыщенных жирных кислот: олеиновая, линолевая и др.

Именно ненасыщенные жирные кислоты особенно важны для нас и должны обязательно поступать с пищей.

Почему? Потому что они:

  • Служат компонентом для синтеза клеточных мембран, участвуют в образовании многих биологически активных молекул.
  • Помогают поддерживать работу эндокринной и половой систем в норме.
  • Помогают предупредить или замедлить развитие атеросклероза и многих его последствий.

Жирные кислоты делятся на две большие группы: ненасыщенные и насыщенные

Медиаторы воспаления и не только

Еще одним видом простых липидов являются такие важные медиаторы внутренней регуляции, как эйкозаноиды. Они имеют уникальное (как практически все в биологии) химическое строение и, соответственно этому, уникальные химические свойства. Главной основой для синтеза эйкозаноидов выступает арахидоновая кислота, которая является одной из важнейших ненасыщенных жирных кислот. Именно эйкозаноиды отвечают в организме за течение воспалительных процессов.

Кратко описать их роль в воспалении можно следующим образом:

  • Они изменяют проницаемость сосудистой стенки (а именно ─ повышают ее проницаемость).
  • Стимулируют выход лейкоцитов и других клеток иммунной системы в ткани.
  • С помощью химических веществ опосредуют перемещения клеток иммунитета, выброс ферментов и поглощение чужеродных для организма частиц.

Но на этом роль эйкозаноидов в теле человека не заканчивается, они также ответственны за систему свертывания крови. В зависимости от складывающейся ситуации эйкозаноиды могут расширить сосуды, расслабить гладкую мускулатуру, уменьшить агрегацию или, если потребуется, вызвать обратные эффекты: сужение сосудов, сокращение гладких мышечных клеток и тромбообразование.

Эйкозаноиды – обширная группа физиологически и фармакологически активных соединений

Проводились исследования, согласно которым, люди, в достаточном количестве получавшие главный субстрат синтеза эйкозаноидов ─ арахидоновую кислоту ─ с пищей (находится в рыбьем жире, рыбе, растительных маслах) меньше страдали от заболеваний сердечно-сосудистой системы. Вероятнее всего, это связано с тем, что такие люди имеют более совершенный обмен эйкозаноидов.

Вещества сложного строения

Сложные липиды ─ группа веществ, не менее важная для организма, чем простые липиды. Основные свойства этой группы жиров:

  • Участвуют в образовании клеточных мембран, наряду с простыми липидами, а также обеспечивают межклеточные взаимодействия.
  • Входят в состав миелиновой оболочки нервных волокон, необходимой для нормальной передачи нервного импульса.
  • Они являются одним из важных компонентов сурфактанта ─ вещества, обеспечивающего процессы дыхания, а именно предотвращающего спадание альвеол во время выдоха.
  • Многие из них играют роль рецепторов на поверхности клеток.
  • Значение некоторых сложных жиров, выделяемых из спинномозговой жидкости, нервной ткани, сердечной мышцы до конца не выяснена.

К простейшим представителям липидов этой группы относятся фосфолипиды, глико- и сфинголипиды.

Холестерин

Холестерин является веществом липидной природы с наиболее важным значением в медицине, так как нарушение именно его обмена негативно сказывается на состоянии всего организма.

Часть холестерина поступает внутрь с пищей, а часть ─ синтезируется в печени, надпочечниках, половых железах и коже.

Он также участвует в образовании клеточных мембран, синтезе гормонов и других химически активных веществ, а также участвует в метаболизме липидов в теле человека. Показатели именно холестерина в крови часто исследуются врачами, так как они показывают состояние обмена липидов в организме человека в целом.

Липиды имеют свои особые транспортные формы ─ липопротеины. С их помощью они могут переноситься с током крови, не вызывая эмболии.

Нарушения жирового обмена быстрее и ярче всего проявляются нарушениями обмена холестерина, преобладанием атерогенных его переносчиков (так называются липопротеины низкой и очень низкой плотности) над антиатерогенными (липопротеины с высокой плотностью).

Основным проявлением патологии липидного обмена является развитие атеросклероза.

Проявляет он себя сужением просвета артериальных сосудов по всему организму. В зависимости от преобладания в сосудах различных локализаций развивается сужение просвета коронарных сосудов (сопровождающееся стенокардией), сосудов головного мозга (с нарушениями запоминания, слуха, возможными головными болями, шумом в голове), сосудов почек, сосудов нижних конечностей, сосудов органов пищеварения с соответствующей симптоматикой.

Таким образом, липиды одновременно являются незаменимым субстратом для многих процессов в организме и, в то же время, при нарушении жирового обмена, могут стать причиной многих заболеваний и патологических состояний. Поэтому, жировой обмен требует за собой контроля и коррекции при возникновении такой необходимости.

Липиды – класс органических соединений. Они играют важную роль в жизнедеятельности человека. Существует 2 вида веществ: сложные и простые липиды. Простые содержат молекулы спирта и желчной кислоты, а сложные – дополнительные молекулярные соединения.

Липиды присутствуют во многих продуктах, входят в состав множества лекарственных препаратов, используются в пищевой промышленности. Липидные клетки есть во всех органах и тканях человека и являются источником энергии.

Отличие липидов от жиров

Хотя жиры и являются подвидом липидов, однако они обладают несколько другим профилем, отличаются по структуре, плотности и составу. К жирам (триглицеридам) относятся лишь некоторые разновидности липидов, которые состоят из соединений глицеринового спирта и кислот карбона. Жиры, как и липидные клетки, – неотъемлемые элементы для полноценной работы организма.

Доля липидов в клетке

Что такое липиды: понятие и функции

Каждый вид липидов играет особую роль в формировании, работе и построении человеческого организма. Нехватка какого-либо вещества проявляется дисфункциями органов, слабостью мембран эритроцитов, указывает на определенные проблемы со здоровьем. Липидные клетки участвуют в процессах:

  • преобразование поступающих в организм веществ в энергию;
  • деление и каталитический процесс регенерации клеток;
  • выработка гормональных веществ и кровяных элементов;
  • отправка нервных импульсов в головной мозг;
  • защита органов;
  • дыхание.

Этим их участие в физиологических процессах не ограничивается, но это основные функции, которые выполняют соединения липидов.

Если рассматривать роль липидов для организма, то они участвуют практически во всех процессах. Без липидных веществ невозможна работа клеток в организме.

Без липидов человек не смог бы существовать полноценно. Выделяют 7 основных функций.

  1. Энергетическая. При распаде липидных клеток высвобождается энергия, которая позволяет организму осуществлять важные процессы (дыхание, рост, подвижность и прочие).
  2. Резервная. При излишке энергии, поступающей с липидами в организм, вещества откладываются, создавая энергетический резерв, который человек видит на своем теле в качестве лишних килограммов и сантиметров на талии. При недостающем объеме липидов либо за ненадобностью липидная ткань расщепляется, высвобождая необходимое количество энергии.
  3. Структурная и барьерная. Липиды выступают в роли своеобразной мембраны в пространственном и структурном строении клеток. Они формируют двойную стенку, оберегая клетку от разрушения и обеспечивая сохранность ее формы. Как следствие – клетка нормально функционирует, выполняя свои функции.
  4. Транспортная. Транспортировка веществ по организму – второстепенная задача липидов. Эту функцию осуществляют липопротеины, в состав которых входят плазматические белковые клетки. Именно белок помогает транспортировать вещества между органами и системами организма.
  5. Ферментативная. Без липидов организм не смог бы вырабатывать ферменты, которые участвуют в расщеплении органических соединений. Ценность липидных клеток заключается в помощи в усвоении полезных жиров. Хотя липиды и не являются ферментативным веществом, они играют существенную роль в пищеварении.
  6. Сигнальная. Участвуют сложные липидные соединения. Гликолипиды позволяют передавать импульсы между клетками нервной системы.
  7. Регуляторная. Как и в случае с ферментами, функция регуляции считается второстепенной. Липиды в крови оказывают небольшое влияние на протекание соматических процессов. Однако они присутствуют в составе гормонов, вырабатываемых надпочечниками и мочеполовой системой. Стероидные гормональные вещества регулируют работу половой системы, отвечают за рост и развитие организма, поддерживают иммунитет. Поэтому при дефиците липидов регуляторная функция нарушится, что повлияет на множество процессов в организме.

Мембрана клетки

Образование бислоя липидными мономерами

Молекулы-мономеры – смесь химических веществ, способных образовать сложные соединения при скреплении друг с другом. Мембранные стенки клетки имеют двойной липидный слой. Молекула, формирующая мембрану, состоит из 2 частей: гидрофобная (хвост, который не контактирует с водной средой) и гидрофильная (головка, соприкасающаяся с водой).

Гидрофобность – физическое свойство молекулы, стремящейся не контактировать с водой.

Бислой образуется вследствие разворота гидрофильной стороны как внутрь, так и наружу клетки. Гидрофобы, которые избегают воды, практически соприкасаются, находясь между 2-я слоями. Внутри образующегося бислоя способны находиться прочие смешанные вещества, например: углеводы, другие сложные соединения. Именно они обеспечивают регуляцию попадания органических веществ сквозь толщу клеточной стенки.


Образование бислоя и способы соединения молекул

Липидная биохимия

Так как биологическая роль липидов важна, то они тесно связаны со многими жизненными процессами. Они содержатся практически во всех продуктах питания, насыщая организм энергией. При дефиците триглицеридов организм расщепляет белки и углеводы для обеспечения работы органов.

Липиды в крови тесно связаны с метаболизмом веществ.

  1. АТФ. Кислота считается энергетической единицей для живой материи. Аденозинтрифосфорная кислота обеспечивает транспортировку питательных веществ, обеззараживание токсических элементов, деление клеток.
  2. Нуклеиновая кислота. Структурная часть ДНК. При расщеплении липидов часть энергии уходит на клеточное деление, в процессе которого образуются новые цепочки ДНК.
  3. Аминокислоты. Структурная часть белковых веществ. Соединяясь с липидами, превращаются в липопротеины, осуществляющие транспортировку полезных веществ в организме.
  4. Стероиды. Гормоны с высоким уровнем содержания липидов. Если они плохо усваиваются, то у человека повышается риск патологий эндокринной системы.

Нуклеиновые кислоты

Метаболизм липидов

Жиры по большей части поступают в организм с пищей. Во рту происходит ее измельчение, еда перемешивается со слюной, что обуславливает частичную растворимость под воздействием липазы – одной из составляющих слюны.

Под воздействием липазы осуществляется гидролиз сложноэфирных ацилглицеринов.

Эмульгирование жира (смешивание с водой) делает гидрофобный субстрат восприимчивым к воздействию липазы. Поступившая пища при глотании попадает в желудок, где происходит разложение липидов на простые вещества в соляной кислоте.

Так как липиды не водорастворимые, при попадании в кишечник распадаются не сразу. Там фосфолипаза расщепляет фосфолипиды, а холестеролэстераза – холестерол благодаря выделяемому соку поджелудочной железы. После этого нерастворимые липидные ферменты всасываются в стенки тонкой кишки.

Задача каждого из ферментов – разрушение прочной молекулярной связи либо соединений атомов в молекулах.


Транспорт липидов

Значение триглицеридов в здоровье эпидермиса и волос

В кожных покровах расположены сальные железы, выделяющие секрецию, насыщенную жирами. Дефицит липидов влиять на протекание основных процессов в регенерации клеток дермы и волос. Жиры важны для здоровья кожных покровов и прилегающих к ним придатков:

  • в волосах содержится большая часть сложных липидов, без которых они болеют, теряют здоровый и ухоженный внешний вид, блеск;
  • дефицит жиров приводит к нехватке энергии для регенерации клеток кожи;
  • дерма становится сухой, теряет эластичность, если организм регулярно испытывает нехватку триглицеридов;
  • плохая секреция сальных желез не обеспечит хорошую защиту роговой прослойки дермы от агрессивных факторов внешней среды;
  • достаточное содержание жиров делает ногтевые пластины более твердыми.

Чтобы восполнить дефицит необходимо соблюдать здоровую диету и использовать специальную косметику, содержащую липиды.


Классификация

Классификация и особенности видов липидов

В основе классификации – химическое структурное строение липидов: простые и сложные. Но есть и другие вещества, которые разделяются по особым критериям.

  1. Экзогенные и эндогенные. Первые попадают в организм извне (косметика, лекарства и прочее), после чего усваиваются жирами. Далее некоторые из компонентов их синтеза превращаются в другие соединения – эндогенные липиды.
  2. Жирные кислоты. Структурный липидный элемент. Свойства жирнокислотных веществ меняются в зависимости от их содержания. В пример можно поставить энергетический источник – триглицериды, липиды (делятся на нейтральные ацилглицериды и воск) – результат соединения спирта глицерина с некоторыми из кислот или другие нейтральные триацилглицериновые и алкильные липиды, триацилглицеролы. Организм получает комплекс жирных кислот вместе с продуктами питания, после чего они преобразуются и используются для выполнения биологических функций. Лучшими источниками кислот выступают животные жиры и полученные из растений, тропические растительные и промышленные жиры.
  3. Насыщенные и ненасыщенные. Первые практически не имеют полезных качеств, так как плохо усваиваются. Вторые разделяются на 2 вида: мононенасыщенные (способствуют снижению холестеринового уровня в сыворотке крови) и полиненасыщенные (не вырабатываемые организмом, поступающие только с едой).
  4. Фосфолипиды. Совместно с холестерином являются сырьем для создания стенок клеток. Глицерофосфолипиды помогают транспортировать полезные вещества по организму.
  5. Глицерин и триглицериды. Глицеролипиды отвечают за поставку энергии. Триглицериды выделяют энергию, обеспечивая мышцам активность.
  6. Бета-липиды. Второе название бета-липопротеиды. Избыток вещества повреждает сосуды, вызывая развитие атеросклероза. Тому причина холестерол, который бета-липиды транспортируют по организму. Иногда бывает, что он застревает в просветах сосудов.

Строение и молекулярная формула фосфолипидов

Липиды в рационе

Как углеводы (олигосахариды, полисахариды и моносахариды) и белки, большинство липидных жиров поступают в организм с пищей, однако некоторая их доля синтезируется печенью. Они обладают самой высокой калорийностью среди прочих элементов, поэтому чрезмерное их употребление становится причиной набора веса, так как организм автоматически начнет запасать излишки поступающего жира. Дефицит послужит толчком для развития множества патологий, в том числе нарушений двигательного аппарата, угнетение умственных способностей и прочее.

Организм ежедневно тратит определенное количество липидов при движении и в состоянии покоя, сжигая их и преобразуя в энергию. Ведь чем больше человек двигается, тем лучше у него естественный обмен веществ, быстрее катализ жиров, он худеет или сохраняет вес неизменным. При длительном дефиците липидов, которые должны поступать с пищей, внутренние системы и органы расходуют ранее «припрятанные» запасы подкожных жиров. Сложнее расходуются отложения у женщин, чем у мужчин.

Основной элементарный объем липидов содержится в мясе, молоке, орехах, сырах, масле. Эти продукты рекомендовано включать в ежедневное меню, чтобы повысить липидный уровень.


Орехи богаты липидами

Для определения общего уровня органических веществ можно пройти специальный анализ, по результату которого врач сделает заключение, сравнит показатели с таблицей установленных норм, назначит лечение и решит необходимость дополнительной диагностики. Снижать или повышать липидный уровень нужно под контролем специалиста по назначенной схеме терапии.

Самостоятельный прием препаратов запрещен, так как можно спровоцировать мембранодеструктивные изменения, дисфункции липидного метаболизма. Если беременная принимает неправильное лечение, то у плода либо новорожденного возможно нарушение процесса миелинизации (покрытие нервных волокон миелином).

Исследование лучше проводить в частных клиниках, например: в сети лабораторий Инвитро. Филиалы этой медицинской организации есть практически в каждом городе. В этих медучреждениях есть современное функциональное оборудование, благодаря которому можно быстро получить ответы анализа с расшифровкой и характеристикой формулы крови.

Наглядно увидеть, как происходит липидный обмен и основную информацию о веществе, можно в познавательном видеоролике:

Какие блюда при повышенных показателях холестерина можно употреблять в пищу, рецепты и советы? Понятие ферментов плазмы крови и их роль в жизнедеятельности человека

ЛИПИДЫ - это разнородная группа природных соединений, полностью или почти полностью нерастворимых в воде, но растворимых в органических растворителях и друг в друге, дающих при гидролизе высокомолекулярные жирные кислоты.

В живом организме липиды выполняют разнообразные функции.

Биологические функции липидов:

1) Структурная

Структурные липиды образуют сложные комплексы с белками и углеводами, из которых построены мембраны клетки и кле­точных структур, участвуют в разнообразных процессах, протекаю­щих в клетке.

2) Запасная (энергетическая)

Запасные липиды (в основном жиры) являются энергетическим резервом организма и участвуют в обменных процессах. В растениях они накапливаются главным образом в плодах и семенах, у животных и рыб - в подкожных жировых тканях и тканях, окру­жающих внутренние органы, а также печени, мозговой и нервной тка­нях. Содержание их зависит от многих факторов (вида, возраста, питания и т. д.) и в отдельных случаях составляет 95-97% всех вы­деляемых липидов.

Калорийность углеводов и белков: ~ 4 ккал/грамм.

Калорийность жира: ~ 9 ккал/грамм.

Преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность – он не связан с водой. Это обеспечивает компактность жировых запасов - они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме – примерно 400 гр.; при голодании этого количества не хватает даже на одни сутки.

3) Защитная

Подкожные жировые ткани предо­храняют животных от охлаждения, а внутренние органы - от меха­нических повреждений.

Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.

Особую группу по своим функциям в живом организме составляют защитные липиды растений - воски и их производные, покрывающие поверхность листьев, семян и плодов.

4) Важный компонент пищевого сырья

Липиды являются важным компонентом пищи, во многом опреде­ляя ее пищевую ценность и вкусовое достоинство. Исключительно велика роль липидов в разнообразных процессах пищевой техноло­гии. Порча зерна и продуктов его переработки при хранении (прогоркание) в первую очередь связана с изменением его липидного комп­лекса. Липиды, выделенные из ряда растений и животных, - основное сырье для получения важнейших пищевых и технических про­дуктов (растительного масла, животных жиров, в том числе сливоч­ного масла, маргарина, глицерина, жирных кислот и др.).

2 Классификация липидов

Общепринятой классификации липидов не существует.

Наибо­лее целесообразно классифицировать липиды в зависимости от их хи­мической природы, биологических функций, а также по отношению к некоторым реагентам, например, к щелочам.

По химическому составу липиды обычно делят на две группы: простые и сложные.

Простые липиды – сложные эфиры жирных кислот и спиртов. К ним относятся жиры , воски и стероиды .

Жиры – эфиры глицерина и высших жирных кислот.

Воски – эфиры высших спиртов алифатического ряда (с длинной углеводной цепью 16-30 атомов С) и высших жирных кислот.

Стероиды – эфиры полициклических спиртов и высших жирных кислот.

Сложные липиды – помимо жирных кислот и спиртов содержат другие компоненты различной химической природы. К ним относятся фосфолипиды и гликолипиды .

Фосфолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с фосфорной кислотой (фосфорная кислота может быть соединена с дополнительным соединением). В зависимости от того, какой спирт входит в состав фосфолипидов, они подразделяются на глицерофосфолипиды (содержат спирт глицерин) и сфингофосфолипиды (содержат спирт сфингозин).

Гликолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с углеводным компонентом. В зависимости от того, какой углеводный компонент входит в состав гликолипидов, они подразделяются на цереброзиды (в качестве углеводного компонента содержат какой-либо моносахарид, дисахарид или небольшой нейтральный гомоолигосахарид) и ганглиозиды (в качестве углеводного компонента содержат кислый гетероолигосахарид).

Иногда в самостоятельную группу липидов (минорные липиды ) выделяют жирораство­римые пигменты, стерины, жирорастворимые витамины. Некоторые из этих соединений могут быть отнесены к группе простых (нейтраль­ных) липидов, другие - сложных.

По другой классификации липиды в зависимости от их отношения к щелочам делят на две большие группы: омыляемые и неомыляемые . К группе омыляемых липидов относятся простые и сложные липиды, которые при взаимодействии со щелочами гидролизуются с образова­нием солей высокомолекулярных кислот, получивших название «мы­ла». К группе неомыляемых липидов относятся соединения, не подвергающиеся щелочному гидролизу (стерины, жирорастворимые витамины, простые эфиры и т. д.).

По своим функциям в живом организме липиды делятся на струк­турные, запасные и защитные.

Структурные липиды - главным образом фосфоли­пиды.

Запасные липиды - в основном жиры.

Защитные липиды растений - воски и их производные, покрывающие поверхность листьев, семян и плодов, животных – жиры.

ЖИРЫ

Химическое название жиров - ацилглицерины. Это сложные эфиры глицерина и высших жирных кислот. "Ацил-" - это означает "остаток жирных кислот".

В зависимости от количества ацильных радикалов жиры разделяются на моно-, ди- и триглицериды. Если в составе молекулы 1 радикал жирных кислот, то жир называется МОНОАЦИЛГЛИЦЕРИНОМ. Если в составе молекулы 2 радикала жирных кислот, то жир называется ДИАЦИЛГЛИЦЕРИНОМ. В организме человека и животных преобладают ТРИАЦИЛГЛИЦЕРИНЫ (содержат три радикала жирных кислот).

Три гидроксила глицерина могут быть этерифицированы либо только одной кислотой, например пальмитиновой или олеиновой, либо двумя или тремя различными кислотами:

Природные жиры содержат главным образом смешанные триглице-риды, включающие остатки различных кислот.

Так как спирт во всех природных жирах один и тот же - глицерин, наблюдаемые между жирами раз­личия обусловлены исключительно составом жирных кислот.

В жирах обнаружено свыше четырехсот карбоновых кислот раз­личного строения. Однако большинство из них присутствует лишь в незначительном количестве.

Кислоты, содержащиеся в природных жирах, являются монокарбоновыми, постро­ены из неразветвленных углеродных цепей, содержащих чет­ное число углеродных атомов. Кислоты, содержащие нечетное число атомов углерода, имеющие разветвленную углеродную цепочку или содержащие циклические фрагменты, присутствуют в незначительных количествах. Исключение составляют изовалериановая кислота и ряд циклических кислот, содержащихся в не­которых весьма редко встречающихся жирах.

Наиболее распространенные в жирах кислоты содержат от 12 до 18 атомов угле­рода, они часто называются жирными кислотами. В состав многих жиров входят в небольшом количестве низкомолекулярные кислоты (С 2 -С 10). Кислоты с числом атомов углерода выше 24 присут­ствуют в восках.

В состав глицеридов наиболее распространенных жиров в значительном количестве входят ненасыщенные кислоты, содержащие 1-3 двойные связи: олеиновая, линолевая и линоленовая. В жирах животных присутствует арахидоновая кислота, содержащая четыре двойные связи, в жирах рыб и морских животных обнаружены кислоты с пятью, шестью и более двойными связями. Большинство ненасыщенных кислот липидов имеет цис-конфигурацию, двойные связи у них изолированы или разделены метиленовой (-СН 2 -) груп­пой.

Из всех непредельных кислот, содержащихся в природных жирах, наиболее распространена олеиновая кислота. В очень многих жирах олеиновая кислота составляет больше полови­ны от общей массы кислот, и лишь в немногих жирах ее содер­жится меньше 10%. Две другие непредельные кислоты - линолевая и линоленовая - также очень широко распростра­нены, хотя они присутствуют в значительно меньшем количестве, чем олеиновая кислота. В заметных количествах линолевая и линоленовая кислоты содержатся в растительных мас­лах; для животных организмов они являются незаменимыми кислотами.

Из предельных кислот пальмитиновая кислота почти так же широко распространена, как и олеиновая. Она присутству­ет во всех жирах, причем некоторые содержат ее 15-50% от общего содержания кислот. Широко распространены стеари­новая и миристиновая кислоты. Стеариновая кислота содер­жится в большом количестве (25% и более) только в запасных жирах некоторых млекопитающих (например, в овечьем жи­ре) и в жирах некоторых тропических растений, например в масле какао.

Целесообразно разделять кислоты, содержащиеся в жи­рах, на две категории: главные и второстепенные кислоты. Главными кислотами жира считаются кислоты, содержание которых в жире превышает 10%.

Физические свойства жиров

Как правило, жиры не выдерживают перегонки и разлага­ются, даже если их перегоняют при пониженном давлении.

Температура плавления, а соответственно и консистенция жиров зависят от строения кислот, входящих в их состав. Твердые жиры, т. е. жиры, плавящиеся при сравнительно вы­сокой температуре, состоят преимущественно из глицеридов предельных кислот (стеариновая, пальмитиновая), а в маслах, плавящихся при более низкой температуре и представляющих собой густые жидкости, содержатся значительные количества глицеридов непредельных кислот (олеиновая, линолевая, ли-ноленовая).

Так как природные жиры представляют собой сложные смеси смешанных глицеридов, они плавятся не при определен­ной температуре, а в определенном температурном интервале, причем предварительно они размягчаются. Для характеристи­ки жиров применяется, как правило, температура затверде­вания, которая не совпадает с температурой плавления - она несколько ниже. Некоторые природные жиры - твердые ве­щества; другие же - жидкости (масла). Температура затверде­вания изменяется в широких пределах: -27 °С у льняного мас­ла, -18 °С у подсолнечного, 19-24 °С у коровьего и 30-38 °С у говяжьего сала.

Температура затвердевания жира обусловлена характером составляющих его кислот: она тем выше, чем больше содержа­ние предельных кислот.

Жиры растворяются в эфире, полигалогенопроизводных, в сероуглероде, в ароматических углеводородах (бензоле, толу­оле) и в бензине. Твердые жиры трудно растворимы в петролейном эфире; нерастворимы в холодном спирте. Жиры нера­створимы в воде, однако они могут образовывать эмульсии, ко­торые стабилизируются в присутствии таких поверхностно-ак­тивных веществ (эмульгаторов), как белки, мыла и некоторые сульфокислоты, главным образом в слабощелочной среде. При­родной эмульсией жира, стабилизированной белками, являет­ся молоко.

Химические свойства жиров

Жиры вступают во все химические реакции, характерные для сложных эфиров, однако в их химиче­ском поведении имеется ряд особенностей, связанных со строением жирных кислот и глицерина.

Среди химических реакций с участием жиров выделяют несколько типов превращений.

Которые нужны всему живому. В этой статье мы рассмотрим строение и функции липидов. Они бывают разнообразными как по структуре, так и по функциям.

Строение липидов (биология)

Липид — это сложное органическое химическое соединение. Оно состоит из нескольких компонентов. Давайте рассмотрим строение липидов более подробно.

Простые липиды

Строение липидов этой группы предусматривает наличие двух компонентов: спирта и жирных кислот. Обычно в химический состав таких веществ входят только три элемента: карбон, гидроген и оксиген.

Разновидности простых липидов

Они делятся на три группы:

  • Алкилацилаты (воски). Это сложные эфиры высших жирных кислот и одно- или двухатомных спиртов.
  • Триацилглицерины (жиры и масла). Строение липидов этого вида предусматривает наличие в составе глицерина (трехатомного спирта) и остатков высших жирных кислот.
  • Церамиды. Сложные эфиры сфингозина и жирных кислот.

Сложные липиды

Вещества данной группы состоят не из трех элементов. Помимо них, они включают в свой состав чаще всего сульфур, нитроген и фосфор.

Классификация сложных липидов

Их также можно разделить на три группы:

  • Фосфолипиды. Строение липидов этой группы предусматривает, помимо остатков и высших жирных кислот, наличие остатков фосфорной кислоты, к которым присоединены добавочные группы различных элементов.
  • Гликолипиды. Это химические вещества, образующиеся в результате соединения липидов с углеводами.
  • Сфинголипиды. Это производные алифатических аминоспиртов.

Первые два типа липидов, в свою очередь, разделяются на подгруппы.

Так, разновидностями фосфолипидов можно считать фосфоглицеролипиды (содержат в своем составе глицерин, остатки двух жирных и аминоспирт), кардиолипины, плазмалогены (содержат в своем составе ненасыщенный одноатомный высший спирт, фосфорную кислоту и аминоспирт) и сфингомиелины (вещества, которые состоят из сфингозина, жирной кислоты, фосфорной кислоты и аминоспирта холина).

К видам гликолипидов относятся цереброзиды (кроме сфингозина и жирной кислоты, содержат галактозу либо глюкозу), ганглиозиды (содержат олигосахарид из гексоз и сиаловых кислот) и сульфатиды (к гексозе прикреплена серная кислота).

Роль липидов в организме

Строение и функции липидов взаимосвязаны. Благодаря тому, что в их молекулах одновременно присутствуют полярные и неполярные структурные фрагменты, эти вещества могут функционировать на границе раздела фаз.

Липиды обладают восемью основными функциями:

  1. Энергетическая. За счет окисления этих веществ организм получает более 30 процентов всей необходимой ему энергии.
  2. Структурная. Особенности строения липидов позволяют им быть важной составляющей оболочек. Они входят в состав мембран, выстилают различные органы, образуют мембраны нервных тканей.
  3. Запасающая. Данные вещества являются формой сбережения организмом жирных кислот.
  4. Антиокисдантная. Строение липидов позволяет им выполнять и такую роль в организме.
  5. Регуляторная. Некоторые липиды являются посредниками гормонов в клетках. Кроме того, из липидов формируются некоторые гормоны, а также вещества, стимулирующие иммуногенез.
  6. Защитная. Подкожная прослойка жира обеспечивает термическую и механическую защиту организма животного. Что касается растений, то из восков формируется защитная оболочка на поверхности листьев и плодов.
  7. Информационная. Липиды ганглиозиды обеспечивают контакты между клетками.
  8. Пищеварительная. Из липида холестерина формируются участвующие в процессе переваривания пищи.

Синтез липидов в организме

Большинство веществ этого класса синтезируются в клетке из одного и того же исходного вещества — уксусной кислоты. Регулируют обмен жиров такие гормоны, как инсулин, адреналин и гормоны гипофиза.

Существуют также липиды, которые организм не способен производить самостоятельно. Они обязательно должны попадать в организм человека с пищей. Содержатся они в основном в овощах, фруктах, зелени, орехах, злаках, подсолнечном и оливковом маслах и других продуктах растительного происхождения.

Липиды-витамины

Некоторые витамины по своей химической природе относятся к классу липидов. Это витамины А, D, Е и К. Они должны поступать в организм человека с пищей.

в организме
Витамин Функции Проявление недостатка Источники
Витамин А (ретинол) Участвует в росте и развитии эпителиальной ткани. Входит в состав родопсина — зрительного пигмента. Сухость и шелушение кожи. Нарушение зрения при плохом освещении. Печень, шпинат, морковь, петрушка, красный перец, абрикосы.
Витамин К (филлохинон) Участвует в обмене кальция. Активирует белки, ответственные за свертывание крови, принимает участие в формировании костной ткани. Окостенение хрящей, нарушение свертываемости крови, отложение солей на стенках сосудов, деформация костей. Дефицит витамина К случается очень редко. Синтезируется бактериями кишечника. Также содержится в листьях салата, крапивы, шпината, капусты.
Витамин D (кальциферол) Принимает участие в обмене кальция, формировании костной ткани и эмали зубов. Рахит Рыбий жир, желток яиц, молоко, сливочное масло. Синтезируется в коже под воздействием ультрафиолета.
Витамин Е (токоферол) Стимулирует иммунитет. Участвует в регенерации тканей. Защищает мембраны клеток от повреждений. Повышение проницаемости мембран клеток, снижение иммунитета. Овощи, растительные масла.

Вот мы и рассмотрели строение и свойства липидов. Теперь вы знаете, какими бывают эти вещества, в чем заключаются отличия разных из групп, какую роль липиды выполняют в организме человека.

Заключение

Липиды — сложные органические вещества, которые делятся на простые и сложные. Они выполняют в организме восемь функций: энергетическую, запасающую, структурную, антиоксидантную, защитную, регуляторную, пищеварительную и информационную. Кроме того, существуют липиды-витамины. Они выполняют множество биологических функций.

Жиры и жироподобные вещества, например, такие как стероиды, воски и фосфолипиды, в биологии объединены одним термином: липиды. Они различаются между собой внешним видом, строением и химическими характеристиками. Однако есть свойство, которое всех их объединяет в один класс. На вопрос "что такое липиды" мы ответим так: это нерастворимые в воде соединения, способные растворяться в органических растворителях. Они выполняют в клетке и в организме в целом много важных функций. Мы и рассмотрим их в нашей статье.

Жиры в клетке

Соединения, являющиеся сложными эфирами трехатомного спирта глицерина и высших карбоновых кислот - это жиры. Содержание и функции липидов в клетке зависят от особенностей ткани, в которую они входят. Например, эндосперм семян и плодов таких растений, как грецкий орех, подсолнечник, кукуруза, может вмещать до 90% жира. Подкожная жировая клетчатка млекопитающих представляет собой резервуар богатого энергией органического вещества, выполняющего также защитные и теплоизоляционные функции. В клетках эпителия или мышц содержание жира не превышает 5-15%. Синтез клеточного жира происходит на каналах эндоплазматической сети в процессе реакций пластического обмена. Давая ответ на вопрос о том, что такое липиды, большое внимание мы уделим их химическому строению.

Химическое строение

Реакция, приводящая к образованию молекул жира, называется этерификацией. Сложные эфиры, образовавшиеся в ее результате, кроме остатка глицерина содержат также жирные кислоты. Чаще всего это стеариновая, олеиновая и пальмитиновая высшие карбоновые кислоты. Свойства жиров зависят от их качественного состава и количественного соотношения. Растительные жиры практически всегда легкоплавки, поэтому в обычных условиях представляют собой жидкости. Они содержат ненасыщенные кислоты, например олеиновую. Это оливковое, подсолнечное, горчичное, кунжутное масла. Исключение составляет кокосовое масло, имеющее твердую консистенцию. Твердые - животные жиры - в основном содержат в своем составе насыщенные (предельные) кислоты и накапливаются в сальнике или подкожной жировой клетчатке. Равно как углеводы и белки, липиды относятся к сложным органическим соединениям и синтезируются в реакциях цикла Кальвина клетками зеленых растений в процессе фотосинтеза.

Что такое фосфолипиды

Все живые организмы на Земле, за исключением вирусов, имеют клеточное строение. В состав биологических мембран клеток обязательно входят фосфолипиды. Они также являются сложными эфирами трехатомного спирта глицерина и жирных кислот. От настоящих, или истинных жиров, рассмотренных нами ранее, фосфолипиды отличаются присутствием в их молекулах остатков ортофосфорной кислоты. Молекулы веществ невелики и состоят из частей, именуемых головкой (имеет гидрофильные свойства) и двумя гидрофобными хвостами. Такие соединения называют амфифильными. Находясь в воде, они формируют мицеллы и способны образовывать билипидный слой. Такой состав липидов вместе с белками является основой всех клеточных мембран.

Гликолипиды

Соединения, в состав которых, кроме липидов, входят еще и углеводы, наиболее распространены в нервной ткани, являющейся структурным материалом головного и спинного мозга, а также отходящих от них нервов.

Центробежные нервные окончания передают процесс возбуждения от центральной нервной системы к органам и тканям, а центростремительные нервные волокна посылают импульсы от рецепторов к отделам головного и спинного мозга. Для осуществления передачи возбуждения нервы собраны в пучки и покрыты слоем нейроглии, содержащей гликолипиды. Она выполняет как трофическую (питают нейроны), так и изоляционную функции, не допуская рассеивания электрических импульсов, проходящих по нервным волокнам. Важные функции липидов, содержащих остатки сахаров, характерны для гликокаликса - надмембранного комплекса животной клетки. Благодаря ему осуществляется процесс адгезии - слипания клеток, приводящий к образованию ткани как устойчивой структуры организма.

Лецитин

Вещество входит в группу липидов и в чистом виде представляет собой белую массу, похожую на воск и хорошо впитывающую воду. Температура плавления его составляет +149 °C. Соединение растворяется в органических растворителях, в воде способно набухать и образовывать мицеллы. В промышленности выделяют лецитин из соевых бобов, высокое содержание вещества также наблюдается в яичном желтке, мясе, рыбе. Именно из пищи организм и получает лецитин, так как того, что самостоятельно продуцируется клетками, недостаточно. Какая функция липидов наиболее ярко выражена у лецитина? Это участие вещества в метаболических реакциях. Соединение играет важную роль в жировом обмене, препятствует перерождению гепатоцитов и предохраняет печень от цирроза. Лецитин является протектором, защищающим стенки кровеносных сосудов от появления атеросклеротических бляшек. Доказана функция вещества как антиоксиданта. Как видим, роль липидов в клетке не ограничивается только энергетической и строительной функциями. Велико их значение в поддержании гомеостаза - нормального уровня обмена веществ на уровне клетки и организма в целом.

Стероиды

Половые гормоны, витамин D, холестерин дополняют перечень веществ под общим названием липиды. Эстроген, прогестерон, тестостерон являются регуляторами полового развития организма и его репродуктивных функций. Жирорастворимый витамин D участвует в обмене кальция и фосфора в костной ткани, предотвращая развитие рахита у детей. Исключительно важная роль принадлежит холестерину, который в большом количестве синтезируется половыми железами, надпочечниками, кишечником и почками. Вместе с цитохромами (белками-переносчиками) холестерин находится в крови. Он участвует в синтезе многих гормонов: половых и альдостерона, витамина D. Высокая концентрация холестерина в крови может вызвать появление холестериновых бляшек на стенках сосудов и спровоцировать развитие некоторых сердечно-сосудистых заболеваний: гипертонии, ишемической болезни сердца. Избыточный вес, малоподвижный образ жизни, курение повышают риск образования плохого холестерина. Провоцирует развитие атеросклероза несбалансированное питание, в котором преобладают рафинированные жиры, избыток углеводов, много копченостей и консервантов. Подводя итог, мы ответим на вопрос "что такое липиды" следующим образом: это органические вещества, регулирующие работу важных в организме человека систем - эндокринной, половой и сердечно-сосудистой.

Витамины, гормоны и воски

Низкомолекулярные соединения, выполняющие важные биохимические и физиологические функции - это витамины. Среди них существует группа веществ, растворяющихся в жирах и имеющих липидную природу. Например, витамин D, являющийся производным соединением холестерина. Попадая в организм сначала в виде провитамина, он под действием ультрафиолетовых лучей в клетках кожи превращается в активную форму. Гормоны надпочечников и половых желез - альдостерон, тестостерон, эстроген, прогестерон - также являются жироподобными соединениями. Воски, как и липиды, в клетке выполняют функции защиты. Они встречаются в растительных и животных организмах в качестве водоотталкивающего покрытия. Например, на листьях фикуса, семенах и плодах растений, на перьевом покрове птиц. Пчелами воск используется для постройки сот.

Энергетическая функция

Обмен веществ и энергии в клетках состоит из двух взаимосвязанных и противоположных процессов - ассимиляции и диссимиляции. В реакциях расщепления органических веществ, происходящих при участии кислорода, выделяется определенное количество энергии, которое аккумулируется в клеточных органеллах (митохондриях) в виде молекул аденозинтрифосфорной кислоты - АТФ. Наибольшее количество энергии образуется при расщеплении жиров. Кроме жиров, содержание которых в пище невелико, клетка в основном использует для получения необходимого количества АТФ запасы углеводистой пищи (картофеля, хлеба, сахара), поступившей в организм. Таким образом, еще одним ответом на вопрос о том, что такое липиды, будет следующее утверждение: это наиболее энергоемкий пластический материал клетки.

Обмен жиров в организме

Основными поставщиками липидов в наш организм служат высококалорийные продукты: сливочное масло, жирные сорта мяса и рыбы, сливки, грецкие орехи, арахис, подсолнечное масло.

Они поступают вместе с пищей сначала в желудок, где частично перевариваются под действием фермента желудочного сока - липазы. Затем в двенадцатиперстной кишке под действием панкреатического сока и желчи расщепляются до глицерина и жирных кислот. Эти соединения, попав в тонкий кишечник, всасываются его ворсинками, содержащими мельчайшие лимфатические капилляры. Попав в лимфу, глицерин и высшие карбоновые кислоты проникают из нее в межклеточную жидкость, а затем и в клетки. Здесь, на каналах гладкой эндоплазматической сети, располагается система ферментов, катализирующих реакции ассимиляции, приводящие к образованию молекул жира, специфичных для организма человека.

В нашей статье мы изучили, что такое липиды, и рассмотрели примеры их распространения в живой природе.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top