Основные определения. Линейные электрические цепи постоянного тока

Основные определения. Линейные электрические цепи постоянного тока

Ветвь и узел электрической цепи

Электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и способом их соединения. Соединение элементов электрической цепи наглядно отображается ее схемой. В зависимости от особенностей схемы следует применять тот или иной способ расчета электрической цепи. В данном разделе рассмотрим ключевые понятия, которые в дальнейшем будут необходимы для выбора наиболее оптимального и правильного приема решения задач.

Ветвью называется участок электрической цепи, обтекаемый одним и тем же током. Ветвь образуется одним или несколькими последовательно соединенными элементами цепи.

Узел - место соединения трех и более ветвей.

В качестве примера на рисунке изображены схемы двух электрических цепей. Первая из них содержит 6 ветвей и 4 узла. Вторая состоит из 5 ветвей и 3 узлов. В этой схеме обратите внимание на нижний узел. Очень часто допускают ошибку, считая что там 2 узла электрической цепи, мотивируя это наличием на схеме цепи в нижней части 2-х точек соединения проводников. Однако на практике следует считать две и более точки, соединенных между собой проводником, как один узел электрической цепи.

При обходе по соединенным в ветвях цепям можно получить замкнутый контур электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел встречается в данном контуре не более одного раза. Ниже приведена электрическая схема, на которой отмечено несколько произвольно выбранных контуров.


Всего для данной цепи можно выделить 6 замкнутых контуров.

Закон Ома

Данный закон очень удобно применять для ветви электрической цепи. Позволяет определить ток ветви при известном напряжении между узлами, к которым данная ветвь подключена. Также позволяет буквально в одно действие рассчитать одноконтурную электрическую цепь.

При применении закона Ома предварительно следует выбрать направление тока в ветви. Выбор направления можно осуществить произвольно. Если при расчете будет получено отрицательное значение, то это значит, что реальное направление тока противоположно выбранному.


Для ветви, состоящей только из резисторов и подключенной к узлам электрической цепиa и b (см. рис.) закон Ома имеет вид:


Соотношение (1.15) написано в предположении, что выбрано направление тока в ветви от узла a к узлу b . Если мы выберем обратное направление, то числитель будет иметь вид: (U b -U a). Теперь становится понятно, что если в соотношении (1.15) возникнет ситуация, когда U b >U a то получим отрицательное значение тока ветви. Как уже упоминалось выше, это значит, что реальное направление тока противоположно выбранному. Примером практического применения данного частного случая закона Ома при расчетах электрических цепей является соотношение (1.18) для электрической цепи, изображенной на рисунке.



Для ветви содержащей резисторы и источники электрической энергии закон Ома принимает следующий вид:


Соотношение (1.16) написано в предположении, что предварительно выбрано напавление тока от узла a к узлу b . При расчете алгебраической суммы ЭДС ветви следует знак "+" присваивать тем ЭДС, чье направление совпадает с направлением выбранного тока ветви (направление ЭДС определяется направлением стрелки в обозначении источника электрической энергии). Если направления не совпадают, то ЭДС берется со знаком "-". На рисунке есть примеры применения данного варианта закона Ома - соотношения (1.17) и (1.19)

Линейные и нелинейные электрические цепи

Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы(подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и катушки индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.

Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат - ток.

В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.

Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие толькорезисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.

Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть применён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).

электрическая цепь – это отдельно взятая группа электроприборов (утюги, блоки телевизоры, холодильники и т. д.) совместно с розетками, выключателями, проводами, автоматами и электрической подстанцией (как же без нее получить ток) на данный момент работающих совместно для достижения определенной цели. Ну а вот в зависимости от цели (просмотра любимой передачи, сохранения свежести продуктов или обеспечения стабильности питающих параметров в блоке питания компьютера) электрические цепи подразделяются на простые и сложные, неразветвленные и разветвленные, линейные и нелинейные.

То есть электрическую цепь можно рассматривать как совокупность отдельных электрических устройств, так и совокупность дискретных простейших деталей и связей между ними образующих один из функциональных блоков в электрической схеме какого-то устройства.

Неразветвленные электрические цепи – они же простые – это цепи в которых ток течет не меняя свое значение и по простейшему пути от источника энергии до потребителя. То есть через все элементы этой цепи течет один и тот же ток. Простейшей неразветвленной цепью можно считать цепь освещения одной из комнат в квартире, где используется однорожковая люстра. В данном случае ток течет от источника энергии через автомат, выключатель, лампочку и обратно к источнику энергии.

Разветвленные – это цепи имеющие одно или более ответвленных путей протекания тока. То есть ток начиная свой путь от источника энергии разветвляется на несколько ветвей потребителей, при этом меняя свое значение. Одним из несложных примеров такой цепи является приведенная выше цепь освещения комнаты в квартире, но только с многорожковой люстрой и многоклавишным выключателем. Ток от источника энергии доходит через автомат к многоклавишному выключателю, а дальше разветвляется на несколько ламп люстры, а далее через общий провод обратно к источнику энергии.

Линейной считается такая электрическая цепь, где характеристики всех ее элементов не зависят от величины и характера протекающего тока и приложенного напряжения.

Нелинейной считается цепь содержащая хотя бы один элемент, характеристики которого зависят от протекающего тока и приложенного напряжения.

2. Эквивалентные преобразования в электрических цепях. Определение эквивалентного сопротивления при последовательном, параллельном и смешанном соединении элементов электрических цепей.

При решении задач принято преобразовывать схему, так, чтобы она была как можно проще. Для этого применяют эквивалентные преобразования. Эквивалентными называют такие преобразования части схемы электрической цепи, при которых токи и напряжения в не преобразованной её части остаются неизменными.

Существует четыре основных вида соединения проводников: последовательное, параллельное, смешанное и мостовое.

Последовательное соединение – это такое соединение, при котором сила тока на всем участке цепи одинакова. Ярким примером последовательного соединения является старая елочная гирлянда. Там лампочки подключены последовательно, друг за другом. Теперь представьте, одна лампочка перегорает, цепь нарушена и остальные лампочки гаснут. Выход из строя одного элемента, ведет за собой отключение всех остальных, это является существенным недостатком последовательного соединения.

При последовательном соединении сопротивления элементов суммируются.

Параллельное соединение – это соединение, при котором напряжение на концах участка цепи одинаково. Параллельное соединение наиболее распространено, в основном потому, что все элементы находятся под одним напряжением, сила тока распределена по-разному и при выходе одного из элементов все остальные продолжают свою работу.

При параллельном соединении эквивалентное сопротивление находится как:


В случае двух параллельно соединенных резисторов

В случае трех параллельно подключенных резисторов:


Смешанное соединение – соединение, которое является совокупностью последовательных и параллельных соединений. Для нахождения эквивалентного сопротивления нужно, “свернуть” схему поочередным преобразованием параллельных и последовательных участков цепи.

Сначала найдем эквивалентное сопротивление для параллельного участка цепи, а затем прибавим к нему оставшееся сопротивление R 3 . Следует понимать, что после преобразования эквивалентное сопротивление R 1 R 2 и резистор R 3 , соединены последовательно.

Итак, остается самое интересное и самое сложное соединение проводников.

Мостовая схема соединения представлена на рисунке ниже.

Для того чтобы свернуть мостовую схему, один из треугольников моста, заменяют эквивалентной звездой.

И находят сопротивления R 1 , R 2 и R 3 .

Затем находят общее эквивалентное сопротивление, учитывая, что резисторы R 3 ,R 4 и R 5 ,R 2 соединены между друг другом последовательно, а в парах параллельно.

Линейная электрическая цепь

English: Line circuit

Электрическая цепь, электрические сопротивления, индуктивности и электрические емкости участков которой не зависят от значений и направлений токов и напряжений в цепи (по ГОСТ 19880-74)

Строительный словарь .

Смотреть что такое "Линейная электрическая цепь" в других словарях:

    линейная электрическая цепь - Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с другом линейными зависимостями. [ГОСТ Р 52002 … Справочник технического переводчика

    Линейная электрическая цепь - 119. Линейная электрическая цепь Электрическая цепь, электрические сопротивления, индуктивности и электрические емкости участков которой не зависят от значений и направлений токов и напряжений в цепи Источник: ГОСТ 19880 74: Электротехника.… …

    Линейная электрическая цепь - – электрическая цепь, электрические сопротивления, индуктивности и электрические емкости участков которой не зависят от значений и направлений токов и напряжений в цепи. ГОСТ 19880 74 … Коммерческая электроэнергетика. Словарь-справочник

    линейная электрическая цепь - Электрическая цепь, сопротивления, индуктивности и емкости участков которой не зависят от величин и направлений токов и напряжений в цепи … Политехнический терминологический толковый словарь

    Электрическая цепь линейная (нелинейная) - электрическая цепь, у которой электрические напряжения и электрические токи или (и) электрические токи и магнитные потокосцепления, или (и) электрические заряды и электрические напряжения связаны друг с другом линейными (нелинейными)… … Официальная терминология

    Линейная [нелинейная] электрическая цепь - 1. Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с другом линейными [нелинейными]… … Телекоммуникационный словарь

    Совокупность источников, приёмников электрической энергии и соединяющих их проводов. Кроме этих элементов, в Э. ц. могут входить выключатели, переключатели, предохранители и другие электрические аппараты защиты и коммутации, а также… … Большая советская энциклопедия

    линейная - 98 линейная [нелинейная] электрическая цепь Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с… … Словарь-справочник терминов нормативно-технической документации

    В Викисловаре есть статья «цепь» Цепь: В технике: Цепь конструкция, состоящая из одинаковых звеньев (в изначальном значении металлических колец), соединённых … Википедия

    Рисунок 1 Цепь Чуа. L,G,C1,C2 пассивные элементы, g диод Чуа. В классическом варианте предлагаются следующие значения элементов: L=1/7Гн;G=0.7См;C1=1/9Ф;C2=1Ф Цепь Чуа, схема Чуа простейшая электрическая цепь, демонстрирующая режимы… … Википедия

Постоянным называется неизменный по направлению электрический ток. Электрическая цепь с таким током называется цепью постоянного тока.

Основными величинами, характеризующими процессы, протекающие в электрических цепях постоянного тока, являются: ЭДС источника E(B), напряжение U(B), потенциал Ψ(B), сила тока I(A), мощность P(Вт).

Основными параметрами цепей и их элементов являются:

сопротивление R(Ом), проводимость G(См).

Графической характеристикой цепи является потенциальная диаграмма, показывающая изменение потенциала от сопротивления по контуру.

Законы электрической цепи

Наиболее важными законами, которым подчиняются процессы, происходящие в электрических цепях, являются закон Ома, два закона Кирхгофа, закон баланса мощностей.

Закон Ома применяется для отдельного участка электрической цепи. Он формулируется так: на участке цепи ток прямо пропорционален напряжению и обратно пропорционален сопротивлению этого участка.

Из (3.1) получается: U= IR, а также R=U / I

Однако, из последней формулы не следует, что сопротивление R зависит от напряжения U или от тока I.

Первый закон Кирхгофа применяется для определения соотношения между токами в разветвленных цепях. Он формулируется так: алгебраическая сумма токов ветвей, сходящихся в электрическом узле, равна нулю.

При этом токи, входящие в узел, берутся со знаком “+”, а токи выходящие из узла- со знаком “-”.

Пример. Составить уравнение по I закону Кирхгофа для узла 1.

I 1 + I 2 – I 3 -I 4 = 0

Второй закон Кирхгофа применяется для замкнутого контура. Он гласит:

В любом замкнутом контуре алгебраическая сумма ЭДС источников равна алгебраической сумме падений напряжений на всех сопротивлениях контура.

Σ Ei = Σ Uj (3.3)

Для записи уравнения по II закону Кирхгофа необходимо вначале выбрать направление обхода контура. При записи уравнения ЭДС берется со знаком “+”, если направление ЭДС совпадает с направлением обхода контура, напряжение берется со знаком “+”, если ток в данном сопротивлении совпадает с направлением обхода контура. В противном случае ЭДС и напряжение берутся со знаком “-”.

Пример. Составить уравнение по II закону Кирхгофа для контура II.

Выбираем направление обхода по часовой стрелке (показано стрелкой).

E 2 -E 3 =U 2 -U 3 -U 4 ;

Учитывая закон Ома, запишем так: E 2 -E 3 =I 2 R 2 -I 3 R 3 -I 3 R 4 .

Закон баланса мощностей гласит: в любой момент времени в электри- ческой цепи выполняется баланс мощностей, т. е. алгебраическая сумма мощностей всех источников электроэнергии равна алгебраической сумме мощностей всех приемников цепи.

Σ Р И i =Σ Р П j (3.4)

Пример для рис. 3.5: E 1 I 1 – E 2 I 2 + E 3 I 3 = U 1 I 1 + U 2 I 2 + U 3 I 3 + U 4 I 3

Режимы работы электрических цепей.

Электрическая цепь может работать в одном из четырех режимов:

– номинальном;

– холостого хода (ХХ);

– короткого замыкания (КЗ);

– согласованном.

Рассмотрим неразветвленную электрическую цепь постоянного тока, состоящую из источника ЭДС Е с внутренним сопротивлением R ВН, двухпроводной линии сопротивлением R Л и сопротивления нагрузки R Н, величина которого может изменяться (рис. 3.6).

Номинальный – это режим, при котором все элементы электрической цепи могут работать достаточно долгое время, с заданной надежностью. Этот режим характеризуется номинальным напряжением U НОМ, током I НОМ, мощностью Р НОМ и к.п.д.
которые указываются в паспорте, при этом получим:

Е=I НОМ R ВН +I НОМ R Л +I НОМ R Н; (3.5)

U НОМ =E-I НОМ R ВН (3.6)

Холостой ход – это режим, при котором электрическая цепь разорвана и ток отсутствует, I ХХ =0. В этом режиме можно считать, что R Н → ∞ и U ХХ =Е.

В этом режиме цепь может работать длительное время, без ограничений.

Режим К3 возникает, когда сопротивление приемника (нагрузки) уменьшается до нуля, т.е. R н ≈0.

При этом напряжение на нагрузке равно нулю U=0, а ток нагрузки во много раз превышает номинальный ток.

I КЗ =Е / (R ВН +R Л) (3.7)

Если R Л ≈0, то I КЗ =Е / R ВН, достигая очень больших значений. Поэтому режим К.3.является аварийным режимом.

Cогласованным называется режим электрической цепи, при котором мощность, отдаваемая источником во внешнюю цепь, имеет наибольшее значение.

Такой режим возникает при определенных соотношениях между сопротивлениями R ВН, R Н и R Л. Условие возникновения согласованного режима определяется уравнением

R Н = R ВН + R Л (3.8)

В согласованном режиме к.п.д. составляет 0,5, поэтому этот режим для мощных электроустановок практически не используется. В этом режиме работают лишь некоторые маломощные устройства радио, автоматики и другие.

Источники ЭДС и тока

Источником электроэнергии называется устройство, преобразующее энергию неэлектрической природы в электрическую энергию.

Источники электроэнергии постоянного тока в зависимости от их харак- теристик можно разделить на две группы: источники ЭДС и источники тока.

Источники ЭДС обладает малым внутренним сопротивлением R ВН и на схемах обозначается следующим образом:

Здесь R Н – сопротивление нагрузки, подключенное к клеммам а и б источника ЭДС.

Особенностью источника ЭДС является то, что напряжение на его клеммах при изменении сопротивления нагрузки R Н изменяется не значительно. При этом изменяется ток нагрузки I Н (когда R Н уменьшается, I Н увеличивается и наоборот). Напряжение источника ЭДС определяется выражением:

U=E – I Н R ВН (3.9)

Источник тока обладает малой внутренней проводимостью G ВН и на схеме обозначается так:

При изменении сопротивления нагрузки R Н, подключенной к источнику тока, ток нагрузки I Н изменяется незначительно, При этом изменяется напряжение U на клеммах а и б источника тока (когда R Н увеличивается, напряжение U так же увеличивается) .

Величина тока нагрузки источника тока определяется по формуле

I Н =I К -UG ВН (3.10)

где I К – ток, создаваемый источником тока.

К источникам ЭДС можно отнести электромеханические генераторы, гальванические элементы и аккумуляторы.

К источникам тока можно отнести зарядные устройства, специальные источники электропитания, применяемые в ЭВМ и т.д. .

В зависимости от вида первичной (неэлектрической) энергии источники постоянного тока делятся на: химические, электромашинные, термоэлектрические, фотоэлектрические, ядерные, магнитогидродинамичес- кие(МГД) и т.д.

Химические источники постоянного тока

К химические источники постоянного тока относятся:

– гальванические элементы;

– топливные элементы;

– аккумуляторы.

Гальванические элементы (батарейки) широко распространены.

В гальваническом элементе происходит преобразование химической энергии окислительно-восстановительных реакций в электрическую энергию. Особенностью гальванического элемента является невозможность восстановления его активных материалов после разряда, поэтому они относятся к необратимым элементам. На практике применяются медно-цинковые, медно-магнитные, серебряно-магнитные, окисно-ртутные, угольно-цинковые.

Топливные элементы применяются на космических летательных аппаратах.

В топливных элементах к электродам подводятся топливо и окислитель по мере расходования их в элементе. Материал электрода в этом случае непосредственно в реакциях не участвует и является лишь катализатором.

Аккумуляторы являются в настоящее время наиболее распространенными источниками постоянного тока (свинцовые, серебряно-цинковые и никель-кадмиевые, литионные, и т. д.).

Рассмотрим устройство и принцип действия свинцового аккумулятора.

Основными элементами аккумулятора являются два электрода, помещенные в электролит.

В качестве положительного электрода используется двуокиси свинца РbO 2 , а в качестве отрицательного – губчатый (пористый) свинец Pb.

Электролит – это раствор серной кислоты H 2 SO 4 .

При подключении к электродам аккумулятора сопротивления (нагрузки) электрическая цепь становится замкнутой и через нагрузку течет ток разряда.

При этом в результате химической реакции положительные ионы свинца Pb ++ c отрицательного электрода вступают в реакцию с отрицательными ионами кислотного остатка SO 4 – – , в результате чего на отрицательном электроде остаются отрицательные заряды и образуется сульфат свинца PbSO 4 , который оседает на электроде.

На положительном электроде в результате химических реакций образуется также пленка сульфата свинца PdSO 4 , выделяются положительные заряды, кроме того, в электролите образуются дополнительные молекулы воды Н 2 О.

Таким образом, при разряде на обоих электродах образуется пленка сульфата свинца, уменьшается количество молекул воды, Плотность электролита уменьшается.

При подключении к электродам аккумулятора внешнего источника постоянного тока начинается процесс заряда.

При этом в результате химических реакций пленка сульфата свинца на обоих электродах разлагается. На отрицательном электроде восстанавливается свинец Pb, на положительном – двуокись свинца PbO 2 . В электролите уменьшается количество молекул воды Н 2 О и увеличивается количество молекул серной кислоты H 2 SO 4 .Плотность электролита увеличивается. Химическое уравнение для обоих процессов имеет следующий общий вид

Pb+PbO 2 +2H 2 SO 4 ← → 2PbSO 4 +2H 2 O

Конструктивно аккумуляторная батарея состоит из нескольких аккумуляторов, соединенных последовательно и расположенных в эбонитовом моноблоке. Каждый аккумулятор содержит отрицательные и положительные пластины. Пластины одной полярности соединены между собой и образуют полублок. Между положительными и отрицательными пластинами для предотвращения короткого замыкания вставляются изолирующие пластины (сепараторы) из эбонита.

Другие часто применяемые источники постоянного тока электромашинные – генераторы будут рассмотрены дальше в соответствующей теме.

Электрической цепью называется совокупность элементов, образующих пути для прохождения . Электрическая цепь состоит из активных и пассивных элементов.

Активными элементами считаются источники электрической энергии (источники напряжения и тока), к пассивным элементам относятся , .

Количественные характеристики элементов электрической цепи называются ее параметрами . Например, параметрами источника постоянного напряжения являются его ЭДС и . Параметром резистора служит его сопротивление катушки - ее индуктивность L и конденсатора - емкость С.

Напряжение или ток, подводимые к цепи, будем называть воздействующим или входным сигналом . Воздействующие сигналы можно рассматривать как различные функции времени, изменяющиеся по некоторому закону z(t) . Например, z(t) может быть постоянной величиной, изменяться во времени по периодическому закону или иметь апериодический характер.

Напряжения и токи, возникающие под влиянием внешнего воздействия в интересующей нас части электрической цепи и также являющиеся функциями времени х(t) , будем называть реакцией (откликом) цепи или выходным сигналом .

Любой пассивный элемент реальной электрической цепи в той или иной степени обладает активным сопротивлением, индуктивностью и емкостью. Однако, чтобы облегчить изучение процессов в электрической цепи и ее расчет, реальная цепь заменяется идеализированной, состоящей из отдельных пространственно разделенных элементов R, L, С.

При этом считается, что проводники, соединяющие элементы цепи, не обладают активным сопротивлением, индуктивностью и емкостью. Такая идеализированная цепь называется цепью с сосредоточенными параметрами , и основанные на ней расчеты дают во многих случаях хорошо подтверждаемые опытом результаты.

Э лектрические цепи с постоянными параметрами - это такие такие цепи, в которых сопротивления резисторов R, индуктивность катушек L и емкость конденсаторов С являются постоянными, не зависящими от действующи в цепи токов и напряжений. Такие элементы называются линейными .

Если сопротивление резистора R не зависит от тока, то линейная зависимость между падением напряжения и током выражается ur = R х i r , а вольт-амперная характеристика резистора (представляет собой прямую линию (рис. 1,а).

Если индуктивность катушки не зависит от величины (протекающего в ней тока, то потокосцепление самоиндукции катушки ψ прямо пропорционально этому току ψ = L х i l (рис. 1,б).

Наконец, если емкость конденсатора С не зависит от приложенного к обкладкам напряжения uc то заряд q, накопленный на пластинах, и напряжение u c связаны между собой линейной зависимостью графически показанной на рис. 1,в .

Рис. 1. Характеристики линейных элементов электрической цепи: а - вольт-амперная характеристика резистора, б - зависимость потокосцепления от тока в катушке, в - зависимость заряда конденсатора от напряжения на нем.

Линейность сопротивления, индуктивности и емкости носит условный характер, так как в действительности все реальные элементы электрической цепи являются нелинейными. Так, при прохождении тока через резистор последний .

Чрезмерное увеличение тока в катушке с ферромагнитным сердечником может несколько изменит ее индуктивность. В той или иной степени изменяется емкость конденсаторов с различными диэлектриками в зависимости от приложенного напряжения.

Однако в нормальном рабочем режиме элементов эти изменения обычно столь незначительны, что при расчетах могут не приниматься во внимание и такие элементы электрической цепи считаются линейными.

Транзисторы, работающие в режимах, когда используются прямолинейные участки их вольт-амперных характеристик, также условно могут рассматриваться как линейные устройства .

Электрическая цепь, состоящая из линейных элементов, называется линейной электрической цепью . Линейные цепи характеризуются линейными уравнениями для токов и напряжений и заменяются линейными схемами замещения. Линейные схемы замещения составляются из линейных пассивных и активных элементов, вольтамперные характеристики которых линейны. Для анализа процессов в линейных электрических цепях используются .

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Электрические цепи

– это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

– это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.


Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.


Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top