Применение лазера и излучений в медицине pdf. Применение лазера и излучений в медицине

Применение лазера и излучений в медицине pdf. Применение лазера и излучений в медицине

В настоящее время трудно представить прогресс в медицине без лазерных технологий, которые открыли новые возможности в разрешении многочисленных медицинских проблем.

Изучение механизмов воздействия лазерного излучения различных длин волн и уровней энергии на биологические ткани позволяет создавать лазерные медицинские многофункциональные приборы, диапазон применения которых в клинической практике стал настолько широким, что очень трудно ответить на вопрос: для лечения каких заболеваний лазеры не применяют?

Развитие лазерной медицины идет по трем основным ветвям: лазерная хирургия, лазерная терапия и лазерная диагностика.

Нашей областью деятельности являются лазеры для применений в хирургии и косметологии, имеющие достаточно большую мощность для разрезания, вапоризации, коагуляции и других структурных изменений в биоткани.

В ЛАЗЕРНОЙ ХИРУРГИИ

Применяются достаточно мощные лазеры со средней мощностью излучения десятки ватт, которые способны сильно нагревать биоткань, что приводит к ее резанию или испарению. Эти и другие характеристики хирургических лазеров обуславливают применение в хирургии различных видов хирургических лазеров, работающих на разных лазерных активных средах.

Уникальные свойства лазерного луча позволяют выполнять ранее невозможные операции новыми эффективными и минимально инвазивными методами.

1. Хирургические лазерные системы обеспечивают:

2. эффективную контактную и бесконтактную вапоризацию и деструкцию биоткани;

3. сухое операционное поле;

4. минимальное повреждение окружающих тканей;

5. эффективный гемо- и аэростаз;

6. купирование лимфатических протоков;

7. высокую стерильность и абластичность;

8. совместимость с эндоскопическими и лапароскопическими инструментам

Это дает возможность эффективно использовать хирургические лазеры для выполнения самых разнообразных оперативных вмешательств в урологии, гинекологии, оториноларингологии, ортопедии, нейрохирургии и т. д.

Ольга (княгиня Киевская)

[править]

Материал из Википедии - свободной энциклопедии

(Перенаправлено с Княгиня Ольга)Ольга

В. М. Васнецов. «Княгиня Ольга»

3-й княгиня Киева

Предшественник: Игорь Рюрикович

Преемник: Святослав Игоревич

Вероисповедание: Язычество, перешла в христианство

Рождение: неизвестна

Династия: Рюриковичи

Супруг: Игорь Рюрикович

Дети: Святослав Игоревич

Княги́ня О́льга, в крещении Еле́на († 11 июля 969) - княгиня, правила Киевской Русью после гибели мужа, князя Игоря Рюриковича, как регент с 945 до примерно 960 года. Первая из русских правителей приняла христианство ещё до крещения Руси, первая русская святая.

Спустя примерно 140 лет после её смерти древнерусский летописец так выразил отношение русских людей к первому правителю Киевской Руси, принявшему крещение: Была она предвозвестницей христианской земле, как денница перед солнцем, как заря перед рассветом. Она ведь сияла, как луна в ночи; так и она светилась среди язычников, как жемчуг в грязи.

1 Биография

1.1 Происхождение

1.2 Брак и начало правления

1.3 Месть древлянам

1.4 Правление Ольги

2 Крещение Ольги и церковное почитание

3 Историография по Ольге

4 Память о Святой Ольге

4.1 В художественной литературе

4.2 Кинематограф

5 Первоисточники

[править]

Биография

[править]

Происхождение

Согласно самой ранней древнерусской летописи, «Повести Временных Лет», Ольга была родом из Пскова. Житие святой великой княгини Ольги уточняет, что родилась она в деревне Выбуты Псковской земли, в 12 км от Пскова выше по реке Великой. Имена родителей Ольги не сохранились, по Житию они были не знатного рода, «от языка варяжска». По мнению норманистов, варяжское происхождение подтверждается её именем, имеющим соответствие в древнескандинавском как Helga. Присутствие предположительно скандинавов в тех местах отмечено рядом археологических находок, возможно датируемых 1-й половиной X века. С другой стороны, в летописях имя Ольги часто передано славянской формой «Вольга». Известно и древнечешское имя Olha.

Княгиня Ольга на Памятнике «1000-летие России» в Великом Новгороде

Типографская летопись (конец XV века) и более поздний Пискаревский летописец передают слух, будто Ольга была дочерью Вещего Олега, который стал править Киевской Русью как опекун малолетнего Игоря, сына Рюрика: «Нецыи же глаголют, яко Ольгова дщери бе Ольга». Олег же поженил Игоря и Ольгу.

Так называемая Иоакимовская летопись, достоверность которой ставится историками под сомнение, сообщает о знатном славянском происхождении Ольги:

«Когда Игорь возмужал, оженил его Олег, выдал за него жену от Изборска, рода Гостомыслова, которая Прекраса звалась, а Олег переименовал её и нарек в своё имя Ольга. Были у Игоря потом другие жены, но Ольгу из-за мудрости её более других чтил».

Болгарские историки выдвигали также версию о болгарских корнях княгини Ольги, опираясь в основном на сообщение Нового Владимирского Летописца («Игоря же ожени [Олег] въ Болгарехъ, поятъ же за него княжну Ольгу».) и переводя летописное название Плесков не как Псков, но как Плиска - болгарская столица того времени. Названия обоих городов действительно совпадают в древнеславянской транскрипции некоторых текстов, что и послужило основанием для автора Нового Владимирского Летописца перевести сообщение «Повести временных лет» об Ольге из Пскова как об Ольге из болгар, так как написание Плесков для обозначения Пскова давно вышло из употребления.

[править]

Брак и начало правления

Первая встреча князя Игоря с Ольгой.

Худ. В. К. Сазонов

По «Повести временных лет» Вещий Олег женил Игоря Рюриковича, начавшего самостоятельно править с 912 года, на Ольге в 903 году. Дата эта подвергается сомнению, так как, согласно Ипатьевскому списку той же «Повести», их сын Святослав родился только в 942 году.

Возможно, чтобы разрешить это противоречие, поздние Устюжская летопись и Новгородская летопись по списку П. П. Дубровского сообщают о 10-летнем возрасте Ольги на момент свадьбы. Данное сообщение противоречит легенде, изложенной в Степенной книге (2-я половина XVI века), о случайной встрече с Игорем на переправе под Псковом. Князь охотился в тамошних местах. Переправляясь через реку на лодке, он заметил, что перевозчиком была юная девушка, переодетая в мужскую одежду. Игорь тотчас же «разгореся желанием» и стал приставать к ней, однако получил в ответ достойную отповедь: «Зачем смущаешь меня, княже, нескромными словами? Пусть я молода и незнатна, и одна здесь, но знай: лучше для меня броситься в реку, чем стерпеть поругание». О случайном знакомстве Игорь вспомнил, когда пришло время искать себе невесту, и послал Олега за полюбившейся девушкой, не желая никакой другой жены.

«Княгиня Ольга встречает тело князя Игоря». Эскиз В. И. Сурикова, 1915

Новгородская Первая летопись младшего извода, которая содержит в наиболее неизменном виде сведения из Начального свода XI века, оставляет сообщение о женитьбе Игоря на Ольге не датированным, то есть самые ранние древнерусские летописцы не имели сведений о дате свадьбы. Вполне вероятно, что 903 год в тексте ПВЛ возник в более позднее время, когда монах Нестор пытался привести начальную древнерусскую историю в хронологический порядок. После свадьбы имя Ольги упоминается в очередной раз только через 40 лет, в русско-византийском договоре 944 года.

Согласно летописи, в 945 году князь Игорь погибает от рук древлян после неоднократного взимания с них дани. Наследнику престола Святославу тогда было только 3 года, поэтому фактическим правителем Киевской Руси в 945 году стала Ольга. Дружина Игоря подчинилась ей, признав Ольгу представителем законного наследника престола. Решительный образ действий княгини в отношении древлян также мог склонить дружинников в её пользу.

[править]

Месть древлянам

Древляне после убийства Игоря прислали к его вдове Ольге сватов звать её замуж за своего князя Мала. Княгиня последовательно расправилась со старейшинами древлян, а затем привела к покорности народ древлян. Древнерусский летописец подробно излагает месть Ольги за смерть мужа:

«Мщение Ольги против идолов древлянских». Гравюра Ф. А. Бруни, 1839.

1-я месть княгини Ольги: Сваты, 20 древлян, прибыли в ладье, которую киевляне отнесли и бросили в глубокую яму на дворе терема Ольги. Сватов-послов закопали живьем вместе с ладьёй. Ольга посмотрела на них из терема и спросила: «Довольны ли честью?» А они закричали: «Ох! Хуже нам Игоревой смерти».

Вторая месть Ольги древлянам. Миниатюра из Радзивилловской летописи.

2-я месть: Ольга попросила для уважения прислать к ней новых послов из лучших мужей, что и было с охотой исполнено древлянами. Посольство из знатных древлян сожгли в бане, пока те мылись, готовясь к встрече с княгиней.

3-я месть: Княгиня с небольшой дружиной приехала в земли древлян, чтобы по обычаю справить тризну на могиле мужа. Опоив во время тризны древлян, Ольга велела рубить их. Летопись сообщает о 5 тысячах перебитых древлян.

Четвёртая месть Ольги древлянам. Миниатюра из Радзивилловской летописи.

4-я месть: В 946 году Ольга вышла с войском в поход на древлян. По Новгородской Первой летописи киевская дружина победила древлян в бою. Ольга прошлась по Древлянской земле, установила дани и налоги, после чего вернулась в Киев. В ПВЛ летописец сделал врезку в текст Начального свода об осаде древлянской столицы Искоростеня. По ПВЛ после безуспешной осады в течение лета Ольга сожгла город с помощью птиц, к ногам которых велела привязать зажжённую паклю с серой. Часть защитников Искоростеня были перебиты, остальные покорились. Схожая легенда о сожжении города с помощью птиц излагается также Саксоном Грамматиком (XII век) в его компиляции устных датских преданий о подвигах викингов и скальдом Снорри Стурлусоном.

За последние полвека лазеры нашли применение в офтальмологии, онкологии, пластической хирургии и многих других областях медицины и медико-биологических исследованиях.

О возможности использования света для лечения болезней было известно тысячи лет назад. Древние греки и египтяне применяли солнечное излучение в терапии, и эти две идеи даже были связаны друг с другом в мифологии - греческий бог Аполлон был богом солнца и исцеления.

И только после изобретения источника когерентного излучения более 50 лет назад действительно был выявлен потенциал использования света в медицине.

Благодаря особым свойствам, лазеры гораздо эффективнее, чем радиация солнца или других источников. Каждый квантовый генератор работает в очень узком диапазоне длин волн и излучает когерентный свет. Также лазеры в медицине позволяют создавать большие мощности. Пучок энергии может быть сосредоточен в очень маленькой точке, благодаря чему достигается ее высокая плотность. Эти свойства привели к тому, что сегодня лазеры используются во многих областях медицинской диагностики, терапии и хирургии.

Лечение кожи и глаз

Применение лазеров в медицине началось с офтальмологии и дерматологии. Квантовый генератор был открыт в 1960 году. И уже через год после этого Леон Голдман продемонстрировал, как рубиновый красный лазер в медицине может быть использован для удаления капиллярной дисплазии, разновидности родимых пятен, и меланомы.

Такое применение основано на способности источников когерентного излучения работать на определенной длине волны. Источники когерентного излучения в настоящее время широко используются для удаления опухолей, татуировок, волос и родинок.

В дерматологии применяются лазеры различных типов и длин волн, что обусловлено разными видами излечиваемых поражений и основного поглощающего вещества внутри них. также зависит от типа кожи пациента.

Сегодня нельзя практиковать дерматологию или офтальмологию, не имея лазеров, так как они стали основными инструментами лечения пациентов. Применение квантовых генераторов для коррекции зрения и широкого спектра офтальмологических приложений выросло после того, как Чарльз Кэмпбелл в 1961 году стал первым врачом, использовавшим красный лазер в медицине для исцеления пациента с отслоением сетчатки.

Позже для этой цели офтальмологи стали применять аргоновые источники когерентного излучения в зеленой части спектра. Здесь были задействованы свойства самого глаза, особенно его линзы, фокусировать луч в области отслоения сетчатки. Высококонцентрированная мощность аппарата ее буквально приваривает.

Больным с некоторыми формами макулодистрофии может помочь лазерная хирургия - лазерная коагуляция и фотодинамическая терапия. В первой процедуре луч когерентного излучения используется для герметизации кровеносных сосудов и замедления их патологического роста под макулой.

Подобные исследования были проведены в 1940 годах с солнечным светом, но для их успешного завершения врачам были необходимы уникальные свойства квантовых генераторов. Следующим применением аргонового лазера стала остановка внутренних кровотечений. Селективное поглощение зеленого света гемоглобином - пигментом красных кровяных клеток - использовалось для блокирования кровоточащих кровеносных сосудов. Для лечения рака разрушают кровеносные сосуды, входящих в опухоль и снабжающие ее питательными веществами.

Этого невозможно добиться, используя солнечный свет. Медицина очень консервативна, как это и должно быть, но источники когерентного излучения получили признание в разных ее областях. Лазеры в медицине заменили многие традиционные инструменты.

Офтальмология и дерматология также извлекли выгоду из эксимерных источников когерентного излучения в ультрафиолетовом диапазоне. Они стали широко использоваться для изменения формы роговицы (LASIK) для коррекции зрения. Лазеры в эстетической медицине применяются для удаления пятен и морщин.

Прибыльная косметическая хирургия

Такие технологические разработки неизбежно популярны среди коммерческих инвесторов, так как обладают огромным потенциалом получения прибыли. Аналитическая компания Medtech Insight в 2011 г. оценила объем рынка лазерного косметического оборудования на сумму более 1 млрд долларов США. Действительно, несмотря на снижение общего спроса на медицинские системы во время глобального спада, косметические операции, основанные на использовании квантовых генераторов, продолжают пользоваться постоянным спросом в Соединенных Штатах - доминирующем рынке лазерных систем.

Визуализация и диагностика

Лазеры в медицине играют важную роль в раннем выявлении рака, а также многих других заболеваний. Например, в Тель-Авиве группа ученых заинтересовалась ИК-спектроскопией с использованием инфракрасных источников когерентного излучения. Причиной этого является то, что рак и здоровая ткань могут иметь различную проходимость в инфракрасном диапазоне. Одним из перспективных применений этого метода является выявление меланом. При раке кожи ранняя диагностика очень важна для выживаемости пациентов. В настоящее время обнаружение меланомы делается на глаз, поэтому остается полагаться на мастерство врача.

В Израиле раз в год каждый человек может пойти на бесплатный скрининг меланомы. Несколько лет назад в одном из крупных медицинских центров проводились исследования, в результате которых появилась возможность наглядно наблюдать разницу в ИК-диапазоне разницу между потенциальными, но неопасными признаками, и настоящей меланомой.

Кацир, организатор первой конференции SPIE по биомедицинской оптике в 1984 году, и его группа в Тель-Авиве также разработали оптические волокна, прозрачные для инфракрасных длин волн, что позволило распространить этот метод на внутреннюю диагностику. Кроме того, это может стать быстрой и безболезненной альтернативой цервикальному мазку в гинекологии.

Голубой в медицине нашел применение в флюоресцентной диагностике.

Системы на основе квантовых генераторов также начинают заменять рентген, который традиционно использовался в маммографии. Рентгеновские лучи ставят врачей перед сложной дилеммой: для достоверного обнаружения раковых образований необходима их высокая интенсивность, но рост радиации сам по себе увеличивает риск заболевания раком. В качестве альтернативы изучается возможность использования очень быстрых лазерных импульсов для снимка груди и других частей тела, например, мозга.

ОКТ для глаз и не только

Лазеры в биологии и медицине нашли применение в оптической когерентной томографии (ОКТ), что вызвало волну энтузиазма. Этот метод визуализации использует свойства квантового генератора и может дать очень четкие (порядка микрона), поперечные и трехмерные изображения биологической ткани в режиме реального времени. ОКТ уже применяется в офтальмологии, и может, например, позволить офтальмологу увидеть поперечное сечение роговицы для диагностики заболеваний сетчатки и глаукомы. Сегодня техника начинает использоваться также и в других областях медицины.

Одна из крупнейших областей, формирующихся благодаря ОКТ, занимается получением волоконно-оптических изображений артерий. может быть применена для оценки состояния склонной к разрыву нестабильной бляшки.

Микроскопия живых организмов

Лазеры в науке, технике, медицине также играют ключевую роль во многих видах микроскопии. В этой области было сделано большое число разработок, целью которых является визуализация того, что происходит внутри тела пациента без использования скальпеля.

Самым сложным в удалении рака является необходимость постоянно прибегать к услугам микроскопа, чтобы хирург мог убедиться, что все сделано правильно. Возможность делать микроскопию «вживую» и в реальном времени является значительным достижением.

Новое применение лазеров в технике и медицине - сканирование в ближней зоне оптической микроскопии, которая может производить изображения с разрешением гораздо большим, чем у стандартных микроскопов. Этот метод основан на оптических волокнах с насечками на торцах, размеры которых меньше длины волны света. Это позволило субволновую визуализацию и заложило основу для получения изображения биологических клеток. Использование данной технологии в ИК-лазерах позволит лучше понять болезнь Альцгеймера, рак и другие изменения в клетках.

ФДТ и другие методы лечения

Разработки в области оптических волокон помогают расширить возможности применения лазеров и в других сферах. Кроме того, что они позволяют проводить диагностику внутри организма, энергия когерентного излучения может быть передана туда, где в этом есть необходимость. Это может быть использовано в лечении. Волоконные лазеры становятся гораздо более продвинутыми. Они кардинально изменят медицину будущего.

Область фотомедицины, использующая светочувствительные химические вещества, которые взаимодействуют с телом особым образом, может прибегнуть к помощи квантовых генераторов как для диагностики, так и для лечения пациентов. В фотодинамической терапии (ФДТ), например, лазер и фоточувствительное лекарственное средство может восстановить зрение у больных с «влажной» формой возрастной макулярной дегенерации, основной причиной слепоты у людей в возрасте старше 50 лет.

В онкологии некоторые порфирины накапливаются в раковых клетках и флуоресцируют при освещении определенной длиной волны, указывая на место расположения опухоли. Если эти же самые соединения затем осветить другой длиной волны, они становятся токсичными и убивают поврежденные клетки.

Красный газовый гелий-неоновый лазер в медицине применяется в лечении остеопороза, псориаза, трофических язв и др., так как данная частота хорошо поглощается гемоглобином и ферментами. Излучение замедляет воспалительные процессы, предотвращает гиперемию и отеки, улучшает кровоснабжение.

Персонализированное лечение

Еще две области, в которых найдется применение для лазеров - генетика и эпигенетика.

В будущем все будет происходить на наноуровне, что позволит заниматься медициной в масштабах клетки. Лазеры, которые могут генерировать фемтосекундные импульсы и настраиваться на определенную длину волны, являются идеальными партнерами для медиков.

Это откроет дверь для персонализированного лечения, основанного на индивидуальном геноме пациента.

Леон Голдман - родоначальник лазерной медицины

Говоря об использовании квантовых генераторов в лечении людей, нельзя не упомянуть Леона Голдмана. Он известен как «отец» лазерной медицины.

Уже через год после изобретения источника когерентного излучения Голдман стал первым исследователем, применившим его для лечения заболевания кожи. Техника, которую применил ученый, проложила путь последующему развитию лазерной дерматологии.

Его исследования в середине 1960 годов привели к использованию рубинового квантового генератора в хирургии сетчатки глаза и к таким открытиям, как возможность когерентного излучения одновременно разрезать кожу и запечатывать кровеносные сосуды, ограничивая кровотечение.

Голдман, работавший на протяжении большей части своей карьеры дерматологом в университете Цинциннати, основал Американское общество лазеров в медицине и хирургии и помог заложить основы безопасности лазеров. Умер в 1997 г.

Миниатюризация

Первые 2-микронные квантовые генераторы были размером с двуспальную кровать и охлаждались жидким азотом. Сегодня появились диодные, умещающиеся в ладони, и еще более миниатюрные Такого рода изменения прокладывают путь для новых сфер применения и разработок. Медицина будущего будет располагать крошечными лазерами для хирургии головного мозга.

Благодаря технологическому прогрессу происходит постоянное снижение затрат. Подобно тому как лазеры стали привычными в бытовой технике, они начали играть ключевую роль в больничном оборудовании.

Если раньше лазеры в медицине были очень большими и сложными, то сегодняшнее их производство из оптического волокна значительно снизило стоимость, а переход на наноуровень позволит еще больше сократить затраты.

Другие применения

С помощью лазеров урологи могут лечить стриктуру уретры, доброкачественные бородавки, мочевые камни, контрактуру мочевого пузыря и увеличение простаты.

Использование лазера в медицине позволило нейрохирургам делать точные разрезы и производить эндоскопический контроль головного и спинного мозга.

Ветеринары применяют лазеры для эндоскопических процедур, коагуляции опухолей, выполнения разрезов и фотодинамической терапии.

Стоматологи используют когерентное излучение для проделывания отверстий, в хирургии десен, для проведения антибактериальных процедур, зубной десенсибилизации и рото-лицевой диагностики.

Лазерный пинцет

Биомедицинские исследователи во всем мире применяют оптические пинцеты, клеточные сортировщики, а также множество других инструментов. Лазерные пинцеты обещают лучшую и более быструю диагностику рака и использовались для захвата вирусов, бактерий, мелких металлических частиц и нитей ДНК.

В оптическом пинцете пучок когерентного излучения применяется для удержания и вращения микроскопических объектов, аналогично тому, как металлический или пластиковый пинцет способен подобрать маленькие и хрупкие предметы. Отдельными молекулами можно манипулировать, прикрепляя их к стеклышкам микронного размера или шарикам из полистирола. Когда луч попадает в шарик, он искривляется и оказывает небольшое воздействие, подталкивая шарик прямо в центр луча.

Это создает «оптическую ловушку», которая способна удерживать небольшую частицу в пучке света.

Лазер в медицине: плюсы и минусы

Энергия когерентного излучения, интенсивность которой можно модулировать, используется для рассечения, уничтожения или изменения клеточной или внеклеточной структуры биологических тканей. Кроме того, применение лазеров в медицине, кратко говоря, уменьшает риск инфицирования и стимулирует заживление. Применение квантовых генераторов в хирургии увеличивает точность рассечения, однако, они представляют опасность для беременных и есть противопоказания по употреблению фотосенсибилизирующих лекарств.

Сложная структура тканей не позволяет сделать однозначную интерпретацию результатов классических биологических анализов. Лазеры в медицине (фото) являются эффективным инструментом для уничтожения раковых клеток. Однако мощные источники когерентного излучения действуют без разбора и разрушают не только пораженные, но и окружающие ткани. Это свойство - важный инструмент метода микродиссекции, используемый для проведения молекулярного анализа в интересующем месте с возможностью выборочного разрушения лишних клеток. Цель данной технологии заключается в преодолении гетерогенности, присутствующей во всех биологических тканях, для облегчения их исследования по четко определенной популяции. В этом смысле, лазерная микродиссекция внесла значительный вклад в развитие исследований, в понимание физиологических механизмов, которые сегодня можно четко продемонстрировать на уровне популяции и даже одной клетки.

Функционал тканевой инженерии сегодня стал основным фактором в развитии биологии. Что произойдет, если разрезать актиновые волокна во время деления? Будет ли эмбрион дрозофилы стабильным, если разрушить клетку при фолдинге? Каковы параметры, участвующие в меристемной зоне растения? Все эти вопросы можно решить с помощью лазеров.

Наномедицина

В последнее время появилось множество наноструктур, обладающих свойствами, пригодными для целого ряда биологических применений. Важнейшими из них являются:

  • квантовые точки - крошечные светоизлучающие частицы нанометровых размеров, используемые в высокочувствительной клеточной визуализации;
  • магнитные наночастицы, которые нашли применение в медицинской практике;
  • полимерные частицы для инкапсулированных терапевтических молекул;
  • металлические наночастицы.

Развитие нанотехнологий и применение лазеров в медицине, кратко говоря, революционизировало способ введения лекарственных средств. Суспензии из наночастиц, содержащие лекарственные препараты, могут повысить терапевтический индекс многих соединений (увеличить растворимость и эффективность, снизить токсичность) путем селективного воздействия на пораженные ткани и клетки. Они доставляют действующее вещество, а также регулируют высвобождение активного ингредиента в ответ на внешнюю стимуляцию. Нанотераностика является дальнейшим экспериментальным подходом, обеспечивающим двойное использование наночастиц, соединения лекарственное средство, терапию и средства диагностической обработки изображений, что открывает путь к персонализированному лечению.

Применение лазеров в медицине и биологии для микродиссекции и фотоаблации позволило на разных уровнях понять физиологические механизмы развития болезни. Результаты помогут определить лучшие методы диагностики и лечения каждого пациента. Развитие нанотехнологий в тесной связи с достижениями в области визуализации также будут незаменимы. Наномедицина является перспективной новой формой лечения некоторых видов рака, инфекционных заболеваний или диагностики.

«Лазеры в современной клинической практике» - так называлось научное сообщение директора ИОФ РАН им. А.М. Прохорова академика Ивана Щербакова, которое тот сделал на заседании Президиума РАН 16 февраля 2016 г. Речь шла о новом поколении лазерной медицинской техники, лазерных технологиях в диагностике и лечении различных заболеваний, основанных на результатах фундаментальных исследований в области лазерной физики. Релевантными исследованиями занимается и ИОФ РАН, и целый ряд результатов этих исследований внедрены или внедряются в клиническую практику.

Механизм действия лазера как медицинского инструмента состоит в том, что в живую ткань попадает сфокусированный инфракрасный луч. В точке размером 2-3 микрона мгновенно концентрируется большая энергия и происходит микровзрыв. Эти микровзрывы кладутся один к другому с огромной частотой на всей площади воздействия, тем самым разрывая ткань. Лазер работает как скальпель, только изнутри ткани. Хирурги в настоящее время используют четыре различных эффекта лазера - термический, механический, фотохимический и эффект сварки тканей. Еще одна широчайшая область применения лазеров - диагностика самых разных заболеваний.

В частности, применение лазеров очень популярно в офтальмологии, где уже десятилетия используют лазерный луч как малоинвазивный и точный хирургический инструмент. В лечении глазных заболеваний применяются разные типы лазеров, с разным источником и длиной волны. Длина волны лазерного излучения определяет область применения лазера в офтальмологии.

Например, аргоновый лазер излучает свет в синем и зеленом диапазонах, совпадающий со спектром поглощения гемоглобина. Это позволяет эффективно использовать аргоновый лазер при лечении сосудистой патологии: диабетической ретинопатии, тромбозах вен сетчатки, ангиоматозе Гиппеля-Линдау, болезни Коатса и др.; 70% сине-зеленого излучения поглощается меланином и преимущественно используется для воздействия на пигментированные образования. Криптоновый лазер излучает свет в желтом и красном диапазонах, которые максимально поглощаются пигментным эпителием и сосудистой оболочкой, не вызывая повреждения нервного слоя сетчатки, что особенно важно при коагуляции центральных отделов сетчатки.

В последнее время в клинической практике разработан целый ряд операций с использованием короткоимпульсных лазеров - с длительностью импульса в 250, 300, 400 фемтосекунд. Эти операции очень эффективны и точны, потому что чем короче импульс - тем меньше точка, в которую нужно его сфокусировать, и, следовательно, тем меньше инвазивность и травматичность. С помощью фемтосекундных лазеров врачи производят самые разные операции по коррекции зрения.

Еще одна отрасль медицины, где медицинское применение лазеров приобрело заслуженную популярность - урология. Mеханический эффект лазера проявляется, например, при воздействии на камни в почках, причем даже самые опасные и сложные по форме. Применение лазера приводит к раздроблению камней и выведению их при проведении малоинвазивной операции.

Далее, при помощи лазера можно удалять опухоли головного мозга и выполнять многие нейрохирургические операции. В современной нейроонкологии используют методы лазерной микрохирургии, лазерной стереотаксии, лазерной эндоскопии и интерстициальной лазерной термотерапии. Применение нейрохирургической лазерной техники позволяет повысить радикальность и снизить травматичность операции при опухолях, располагающихся в «критических» областях мозга, поражающих жизненно важные и функционально значимые его отделы, при условии щадящего отношения к смежным мозговым структурам, сохранения анатомической и функциональной целости сосудов головного мозга.

Очень популярны и быстро развиваются лазерные технологии в косметологии и дерматологии. При помощи лазерного луча сегодня возможно удалять самые разные дефекты кожи, в том числе рубцы - как поверхностные, так и глубокие. При этом происходит стимуляция образования нового коллагена, скрывающего рубец. С другой стороны, лазерная хирургия - это и новый подход к деструкции поверхностных злокачественных и предраковых поражений кожи или слизистой оболочки.

Применение лазеров в медицине принципиально отличается от других многочисленных областей технологических применения лазеров. Лазерные медицинские технологии отличаются гуманистической направленностью. Если проблема здоровья стоит достаточно остро для самого человека или его близкого, то проблемы медицины становятся неизмеримо важнее любых других проблем.

Лазерные медицинские технологии отличаются многоплановостью, комплексностью, разнообразием. Лазерная медицина включает воздействие лазерного излучения на различные части тела: кожа, кости, мышцы, жировые ткани, сухожилия, внутренние органы, глаза, зубные ткани и т. п. При этом каждая из них в свою очередь имеет сложное строение. Так в зубе можно отдельно рассматривать эмаль, дентин, пульпу. В коже - роговой слой, эпидермис, дерму. Все эти ткани имеют свои свойства, как оптические (спектральные характеристики, коэффициент отражения, глубина проникновения излучения), так и теплофизические (теплопроводность, температуропроводность, теплоемкость), отличные от свойств других биотканей. Поэтому различается и характер воздействия на них лазерного излучения. Соответственно, в каждом случае необходимо выбирать индивидуальные параметры режима облучения: длину волны, длительность воздействия, мощность, частоту следования импульсов и т.п. Сильное различие свойств биотканей делает возможным специфические воздействия, например, чрескожное воздействие на патологические ткани (облучение подкожных тканей без существенного повреждения кожи).

Каждая ткань в силу своей биологической природы неоднородна, имеет сложную микроструктуру. В состав мягких тканей входит значительное количество воды. В состав костей входят различные минералы. Следствием этого является тот факт, что воздействие излучения на ткани, в особенности разрушающее, хирургическое, для разных тканей и длин волн излучения различается не только количественно, но и качественно. Это означает, что существует несколько совершенно различных механизмов удаления биологических тканей: тепловой и низкоэнергетический коагуляционный с последующей резорбцией, взрывные механизмы, «холодная» абляция.

Интересно, что для осуществления терапевтического воздействия на определенную часть тела лазерное воздействие может быть направлено совсем на другой объект. Здесь показательным является лазерная терапия, когда облучение крови, особых точек или проекций органов на коже человека (зоны Захарьина - Геда), стопе или ладони, области позвоночника оказывает воздействие на внутренние органы, весьма удаленные от области воздействия, и на весь организм в целом.

Кроме того, поскольку организм представляет собой единое целое, результат воздействия продолжается очень долго после его окончания. После лазерной операции реакция организма продолжается в течение дней, недель и даже месяцев.

Такая сложность и комплексность лазерной медицины делает ее очень интересной для исследования и разработки новых технологий.

Почему лазерное излучение нашло такое широкое применение в медицине? Основными особенностями лазерного излучения в применении к лазерной медицине являются:

  • -направленность, монохроматичность, когерентность, определяющие возможность локализации энергии,
  • - широкий спектральный диапазон существующих лазеров (это особенно важно в том случае, когда поглощение носит резонансный характер),
  • - возможность в широких пределах управлять длительностью воздействия (существующие лазеры обеспечивают длительность воздействия от фемтосекундного диапазона до непрерывного воздействия),
  • - возможность плавного изменения в широких пределах интенсивности воздействия,
  • - возможность изменения частотных характеристик воздействия,
  • - широкие возможности оптического управления процессами, в том числе, возможность организации обратной связи,
  • - широкий спектр механизмов воздействия: тепловой, фотохимический, сугубо биофизический, химический,
  • - простота доставки излучения,
  • - возможность бесконтактного воздействия, что обеспечивает стерильность,
  • - возможность проведения бескровных операций, связанная с тепловым и, следовательно, коагуляционным действием излучения.

Таким образом, лазер представляется исключительно точным, универсальным и удобным в использовании инструментом и имеет большой потенциал для медицинских применений в будущем.

Принцип работы лазера

Принципиальную схему работы любого лазерного излучателя можно представить следующим образом (рис. 1).

Рис. 1.

В структуру каждого из них входит цилиндрический стержень с рабочим веществом, на торцах которого расположены зеркала, одно из которых обладает небольшой проницаемостью. В непосредственной близости от цилиндра с рабочим веществом расположена лампа-вспышка, которая может быть параллельна стержню или змеевидно окружать его. Известно, что в нагретых телах, например в лампе накаливания, происходит спонтанное излучение, при котором каждый атом вещества излучает по-своему, и, таким образом, имеются хаотически направленные друг относительно друга потоки световых волн. В лазерном излучателе используется так называемое вынужденное излучение, которое отличается от спонтанного и возникает при атаке возбужденного атома квантом света. Испускаемый при этом фотон по всем электромагнитным характеристикам абсолютно идентичен первичному, атаковавшему возбужденный атом. В результате появляются уже два фотона, обладающие одинаковой длиной волны, частотой, амплитудой, направлением распространения и поляризации. Легко представить, что в активной среде происходит процесс лавинообразного нарастания числа фотонов, по всем параметрам копирующих первичный "затравочный" фотон, и формирующих однонаправленный световой поток. В качестве такой активной среды в лазерном излучателе выступает рабочее вещество, а возбуждение его атомов (накачка лазера) происходит за счет энергии лампы-вспышки. Потоки фотонов, направление распространения которых перпендикулярно плоскости зеркал, отражаясь от их поверхности, многократно проходят сквозь рабочее вещество туда и обратно, вызывая все новые и новые цепные лавинообразные реакции. Поскольку одно из зеркал обладает частичной проницаемостью, часть образующихся фотонов выходит в форме видимого лазерного луча.

Таким образом, отличительной особенностью лазерного излучения является монохроматичность, когерентность и высокая поляризация электромагнитных волн в световом потоке. Монохроматичность характеризуется наличием в спектре источника фотонов преимущественно одной длины волны, когерентность есть синхронизация во времени и пространстве монохроматичных световых волн. Высокая поляризация - закономерное изменение направления и величины вектора излучения в плоскости, перпендикулярной световому лучу. То есть фотоны в лазерном световом потоке обладают не только постоянством длин волн, частот и амплитуды, но и одинаковым направлением распространения и поляризации. В то время как обычный свет состоит из хаотично разлетающихся разнородных частиц. Для сравнения можно сказать, что между светом, испускаемым лазером, и обычной лампой накаливания такая же разница, как между звуком камертона и шумом улицы.

Применение лазеров в стоматологии

В стоматологии лазерное излучение прочно заняло достаточно обширную нишу. На кафедре ортопедической стоматологии БГМУ проводится работа по изучению возможностей применения лазерного излучения, которая охватывает как физиотерапевтические и хирургические аспекты действия лазера на органы и ткани челюстно-лицевой области, так и вопросы технологического применения лазеров на этапах изготовления и ремонта протезов и аппаратов.

ЛАЗЕРЫ в медицине

Лазер - устройство для получения узких пучков световой энергии высокой интенсивности. Лазеры были созданы в 1960 г. , СССР) и Ч. Таунсом (США), удостоенными за это открытие Нобелевской пре-мдп 1964 г. Существуют различные типы лазеров - газовые, жидкостные и работающие на твердых телах. Лазерное излучение может быть непрерывным и импульсным.

Сам термин “лазер”- это аббревиатура от английского “Light Amplification by Stimulated Emission of Radiation”, т. е. “усиление света вынужденным излучением”. Из физики известно, что “лазер - это источник когерентного электромагнитного излучения, возникающего в результате вынужденного испускания фотонов активной средой, находящейся в оптическом резонаторе". Для лазерного излучения характерна монохроматичность, высокая плотность и упорядоченность потока световой энергии. Многообразие используемых в наши дни источников такого излучения определяет разнообразие областей применения лазерных установок.

В медицину лазеры вошли в конце 1960-х годов. Вскоре сформировались три направления лазерной медицины, различие между которыми определялось мощностью светового потока лазера (и, как следствие, видом его биологического воздействия). Излучение низкой мощности (мВт) в основном используется в терапии крови, средней мощности (Вт) – в эндоскопии и фотодинамической терапии злокачественных опухолей, а высокой Вт) – в хирургии и косметологии . Хирургическое применение лазеров (т. н. “лазерные скальпели”) основано на прямом механическом воздействии высокоинтенсивного излучения, которое позволяет резать и “сваривать” ткани. Тот же эффект лежит в основе применения лазеров в косметологии и эстетической медицине (в последние годы наряду со стоматологией одна из самых прибыльных отраслей здравоохранения). Однако у биологов наибольший интерес вызывает феномен терапевтического воздействия лазеров. Известно, что низкоинтенсивное лазерное воздействие приводит к таким положительным эффектам, как повышение тонуса, устойчивость к стрессам, улучшение работы нервной, имунной эндокринной систем, устранению ишемических процессов, заживлению хронических язв и многим другим... Лазерная терапия, безусловно, высокоэффективна, но, что удивительно, до сих пор нет четкого представления об ее биологических механизмах! Ученые пока лишь разрабатывают модели, объясняющие этот феномен. Так, известно, что низкоинтенсивное лазерное излучение (НИЛИ) воздействует на пролиферативный потенциал клеток (то есть стимулирует их деление и развитие). Считается, что причина этого– в локальных изменениях температуры, которые могут стимулировать процессы биосинтеза в тканях. НИЛИ также укрепляет системы антиоксидантной защиты организма (тогда как излучение высокой интенсивности, напротив, приводит к массовому появлению активных форм кислорода.) Скорее всего, именно этими процессами и объясняется терапевтическое действие НИЛИ. Но, как уже упоминалось, существует и другой тип лазерной терапии - т. н. фотодинамическая терапия, применяемая для борьбы со злокачественными образованиями. Она основана на использовании открытых еще в 60-е годы фотосенсибилизаторов - специфических веществ, способных избирательно накапливаться в клетках (в основном раковых). При лазерном облучении средней мощности молекула фотосенсибилизатора поглощает световую энергию, переходит в активную форму и вызывает целый ряд разрушительных процессов в раковой клетке. Так, повреждаются митохондрии (внутриклеточные энергетические структуры), существенно меняется кислородный обмен, что приводит к появлению огромного количества свободных радикалов. Наконец, сильное нагревание воды внутри клетки вызывает разрушение ее мембранных структур (в частности внешней клеточной оболочки). Все это в итоге приводит к интенсивной гибели опухолевых клеток. Фотодинамическая терапия - сравнительно новая область лазерной медицины (развивается с середины 80-х годов) и пока еще не столь популярная, как, скажем, лазерная хирургия или офтальмология , однако именно на нее сейчас возлагают основные надежды врачи-онкологи.

В целом можно сказать, что лазерная терапия в наши дни - одна из наиболее динамично развивающихся отраслей медицины. Причем, что удивительно, не только традиционной. Некоторые терапевтические эффекты лазеров легче всего объясняются наличием в организме систем энергетических каналов и точек, используемых при акупунктурных воздействиях. Известны случаи, когда локальная обработка лазером отдельных тканей вызывала позитивные изменения в других частях организма. Ученым еще предстоит ответить на множество вопросов, связанных с целебными свойствами лазерного излучения, что, безусловно, откроет новые перспективы развития медицины в XXI веке.

Принцип действия лазерного луча основан на том, что энергия сфокуси-тэванного светового пучка резко повышает температуру в облучаемом месте и вызывает коагуляцию (свертывание) блологич. ткани. Особенности биологич. действия лазерного излучения зависят m типа лазера, мощности энергии, ее характера, структуры и биологич. ;зойств облучаемых тканей. Узкий световой пучок большой мощности дает возможность производить светокоагу-ляцию строго определенного участка тканей за доли секунды. Окружающие ткани при этом не страдают. Кроме коагуляции биологич. ткани, при большой мощности излучения возможно и взрывное ее разрушение от воздействия своеобразной ударной волны, образующейся в результате мгновенного перехода тканевой жидкости в газообразное состояние под влиянием высокой температуры. Имеют значение вид тканей, пх окраска (пигментация), толщина, плотность, степень наполнения кровью. Чем больше мощность лазерного излучения, тем глубже оно проникает и тем сильнее его действие.

Первыми использовали лазеры для лечения больных глазные врачи, применившие их для коагуляции сетчатой оболочки глаза при ее отслойке и разрыве (), а также для разрушения мелких внутриглазных опухолей и создания оптич. отверстия в глазу при вторичных катарактах. Кроме того, лазерным лучом уничтожают небольшие, поверхностно расположенные опухоли, коагулируют патологич. образования на поверхности кожи (пигментные пятна, сосудистые опухоли и т. д.). Лазерное излучение используют и в диагностич. целях для исследования кровеносных сосудов, фотографирования внутренних органов и др. С 1970 г. лазерный луч начали применять при хирургич. операциях в качестве «светового скальпеля» для рассечения тканей организма .

В медицине лазеры применяются как бескровные скальпели, используются при лечении офтальмологических заболеваний (катаракта, отслоение сетчатки, лазерная коррекция зрения и др.). Широкое применение получили также в косметологии (лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен).

Виды хирургических лазеров

В лазерной хирургии применяются достаточно мощные лазеры, работающие в непрерывном или импульсном режиме, которые способны сильно нагревать биоткань, что приводит к ее резанию или испарению.

Лазеры обычно именуются по типу активной среды, генерирующей лазерное излучение. Наиболее известны в лазерной хирургии неодимовый лазер и лазер на углекислом газе (или СО2-лазер).

Некоторые другие виды высокоэнергетичных лазеров, используемых в медицине, имеют, как правило, свои узкие области применения. Например, в офтальмологии для прецизионного испарения поверхности роговицы глаза применяются эксимерные лазеры.

В косметологии для устранения сосудистых и пигментных дефектов кожи используются КТР-лазеры, лазеры на красителе и на парах меди, для эпиляции - александритовые и рубиновые лазеры.

СО2 - лазер

Лазер на углекислом газе - это первый хирургический лазер, который активно используется с 1970-х годов по настоящее время.

Высокое поглощение в воде и органических соединениях (типичная глубина проникновения 0,1 мм) делает СО2-лазер подходящим для широкого спектра хирургических вмешательств, в том числе для гинекологии , оториноларингологии , общей хирургии, дерматологии , кожно-пластической и косметической хирургии.

Поверхностное воздействие лазера позволяет иссекать биоткань без глубокого ожога. Это также делает CO2-лазер не опасным для глаз, т. к. излучение не проходит сквозь роговицу и хрусталик.

Конечно, мощный направленный луч может повредить роговицу, но для защиты достаточно иметь обычные стеклянные или пластиковые очки.

Недостаток длины волны 10 мкм состоит в том, что очень трудно изготовить подходящее оптическое волокно с хорошим пропусканием. И до сих пор наилучшим решением является зеркальный шарнирный манипулятор, хотя это достаточно дорогое устройство, сложное в юстировке и чувствительное к ударам и вибрации.

Другим недостатком CO2-лазера - это его непрерывный режим работы. В хирургии для эффективного резания необходимо быстро испарять биоткань без нагрева окружающих тканей, для чего нужна высокая пиковая мощность, т. е. импульсный режим. Сегодня в CO2-лазерах для этих целей применяют так называемый "суперимпульсный" режим (superpulse), при котором лазерное излучение имеет вид пачки коротких, но в 2 - 3 раза более мощных импульсов, по сравнению со средней мощностью непрерывного лазера.

Неодимовый лазер

Неодимовый лазер - это самый распространенный тип твердотельного лазера и в промышленности, и в медицине.

Его активная среда - кристалл алюмоиттриевого граната, активированного ионами неодима Nd:YAG, - позволяет получить мощное излучение в ближнем ИК-диапазоне на длине волны 1,06 мкм практически в любом режиме работы с высоким КПД и с возможностью волоконного выхода излучения.

Поэтому вслед за CO2-лазерами в медицину пришли неодимовые как для целей хирургии, так и терапии.

Глубина проникновения такого излучения в биоткани равна 6 - 8 мм и довольно сильно зависит от ее типа. Это означает, что для достижения такого же режущего или испаряющего эффекта, как у CO2-лазера, для неодимового требуется в несколько раз более высокая мощность излучения. А во-вторых, происходит значительное повреждение подлежащих и окружающих лазерную рану тканей, что отрицательно сказывается на послеоперационном ее заживлении, вызывая различные осложнения, типичные для ожоговой реакции - рубцевание, стеноз, стриктура и т. п.

Предпочтительная сфера хирургического применения неодимового лазера - это объемная и глубокая коагуляция в урологии , гинекологии, онкологические опухоли, внутренние кровотечения и т. п. как в открытых, так и в эндоскопических операциях.

Важно помнить, что излучение неодимового лазера невидимо и опасно для глаз даже в малых дозах рассеянного излучения.

Использование в неодимовом лазере специального нелинейного кристалла КТР (калий-титан-фосфат) позволяет удваивать частоту излучаемого лазером света. Получаемый таким образом КТР-лазер, излучающий в видимой зеленой области спектра на длине волны 532 нм, обладает способностью эффективно коагулировать кровенасыщенные ткани и используется в сосудистой и косметической хирургии.

Гольмиевый лазер

Кристалл алюмоиттриевого граната, активированный ионами гольмия, - Ho:YAG, способен генерировать лазерное излучение на длине волны 2,1 мкм, которое хорошо поглощается биотканью. Глубина его проникновения в биоткань составляет около 0,4 мм, т. е. сравнима с CO2-лазером. Поэтому гольмиевый лазер обладает применительно к хирургии всеми преимуществами СО2-лазера.

Но двухмикронное излучение гольмиевого лазера в то же время хорошо проходит через кварцевое оптическое волокно, что позволяет использовать его для удобной доставки излучения к месту хирургического вмешательства. Это особенно важно, в частности, для проведения малоинвазивных эндоскопических операций.

Излучение гольмиевого лазера хорошо коагулирует сосуды размером до 0,5 мм, что вполне достаточно для большинства хирургических вмешательств. Двухмикронное излучение, к тому же, вполне безопасно для глаз.

Типичные выходные параметры гольмиевого лазера: средняя выходная мощность Вт, максимальная энергия излучения - до 6 Дж, частота повторения импульсов - до 40 Гц, длительность импульса - около 500 мкс.

Сочетание физических параметров излучения гольмиевого лазера оказалось оптимальным для целей хирургии, что позволило ему найти многочисленные применения в самых различных областях медицины.

Эрбиевый лазер

Эрбиевый (Er:YAG) лазер имеет длину волны излучения 2,94 мкм (средний ИК-диапазон). Режим работы - импульсный.

Глубина проникновения в биоткань излучения эрбиевого лазера составляет не более 0,05 мм (50 мкм), т. е. его поглощение еще в раз выше, чем у CO2-лазера, и он оказывает исключительно поверхностное воздействие.

Такие параметры практически не позволяют коагулировать биоткань.

Основные направления применения эрбиевого лазера в медицине:

Микрошлифовка кожи,

Перфорация кожи для взятия проб крови,

Испарение твердых тканей зуба,

Испарение поверхности роговицы глаза для исправления дальнозоркости.

Излучение эрбиевого лазера неопасно для глаз, как и у CO2-лазера, и для него также нет надежного и дешевого волоконного инструмента.

Диодный лазер

В настоящее время существует целая гамма диодных лазеров, имеющих широкий спектр длин волн от 0,6 до 3 мкм и параметров излучения. Основными достоинствами диодных лазеров являются высокий КПД (до 60%), миниатюрность и большой ресурс работы (более 10,000 часов).

Типичная выходная мощность одиночного диода редко превышает 1 Вт в непрерывном режиме, а энергия импульса - не более 1 - 5 мДж.

Для получения мощности, достаточной для хирургии, одиночные диоды объединяют в наборы, состоящие от 10 до 100 элементов, расположенные в виде линейки, или к каждому диоду присоединяют тонкие волокна, которые собирают в жгут. Такие композитные лазеры позволяют получать 50 Вт и более непрерывного излучения на длине волны нм, которые сегодня применяются в гинекологии, офтальмологии, косметологии и др.

Основной режим работы диодных лазеров - непрерывный, что ограничивает возможности их использования в лазерной хирургии. При попытках реализовать суперимпульсный режим работы чересчур длинные импульсы (порядка 0,1 с) на длинах волн генерации диодных лазеров в ближнем ИК-диапазоне рискуют вызвать чрезмерный нагрев и последующее ожоговое воспаление окружающих тканей.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top