Прокариотическая клетка не имеет в своем составе. История открытия

Прокариотическая клетка не имеет в своем составе. История открытия

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты — одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.

Размеры — от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).

1 — кокки; 2 — бациллы; 3 — вибрионы; 4—7 — спириллы и спирохеты.

1 — цитоплазматическая мемб-рана; 2 — клеточ-ная стенка; 3 — слизис-тая кап-сула; 4 — цито-плазма; 5 — хромо-сомная ДНК; 6 — рибосомы; 7 — мезо-сома; 8 — фото-синтети-ческие мемб-раны; 9 — вклю-чения; 10 — жгу-тики; 11 — пили.

Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий — слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).

На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ. Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками. В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).

Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные. «Хромосомная» ДНК (5) — одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом . Плазмиды — внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов. Количество плазмид может быть различным. Наиболее изучены плазмиды, несущие информацию об устойчивости к лекарственным препаратам (R-фактор), принимающие участие в половом процессе (F-фактор). Плазмида, способная объединяться с хромосомой, называется эписомой .

В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы).

В цитоплазме бактерий находятся рибосомы 70S-типа (6) и включения (9). Как правило, рибосомы собраны в полисомы. Каждая рибосома состоит из малой (30S) и большой субъединиц (50S). Функция рибосом: сборка полипептидной цепочки. Включения могут быть представлены глыбками крахмала, гликогена, волютина, липидными каплями.

У многих бактерий имеются жгутики (10) и пили (фимбрии) (11). Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина. Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10-20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Количество и расположение жгутиков может быть различным. Пили — прямые нитевидные структуры на поверхности бактерий. Они тоньше и короче жгутиков. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.

Спорообразование у бактерий — способ переживания неблагоприятных условий. Споры формируются обычно по одной внутри «материнской клетки» и называются эндоспорами. Споры обладают высокой устойчивостью к радиации, экстремальным температурам, высушиванию и другим факторам, вызывающим гибель вегетативных клеток.

Размножение. Бактерии размножаются бесполым способом — делением «материнской клетки» надвое. Перед делением происходит репликация ДНК.

Редко у бактерий наблюдается половой процесс, при котором происходит рекомбинация генетического материала. Следует подчеркнуть, что у бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.

— однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F +), так и в клетке-реципиенте (F -)).

Трансформация — однонаправленный перенос фрагментов ДНК от клетки-донора к клетке-реципиенту, не контактирующих друг с другом. При этом клетка-донор или «выделяет» из себя небольшой фрагмент ДНК, или ДНК попадает в окружающую среду после гибели этой клетки. В любом случае ДНК активно поглощается клеткой-реципиентом и встраивается в собственную «хромосому».

Трансдукция — перенос фрагмента ДНК от клетки-донора к клетке-реципиенту с помощью бактериофагов.

Вирусы

Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты — либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.

Размеры вирусов — 10-300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Капсид — оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом . Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.

В цикле репродукции вируса можно выделить следующие стадии.

  1. Осаждение на поверхности клетки-хозяина.
  2. Проникновение вируса в клетку-хозяина (могут попасть в клетку-хозяина путем: а) «инъекции», б) растворения оболочки клетки вирусными ферментами, в) эндоцитоза; попав внутрь клетки вирус переводит ее белок-синтезирующий аппарат под собственный контроль).
  3. Встраивание вирусной ДНК в ДНК клетки-хозяина (у РНК-содержащих вирусов перед этим происходит обратная транскрипция — синтез ДНК на матрице РНК).
  4. Транскрипция вирусной РНК.
  5. Синтез вирусных белков.
  6. Синтез вирусных нуклеиновых кислот.
  7. Самосборка и выход из клетки дочерних вирусов. Затем клетка либо погибает, либо продолжает существовать и производить новые поколения вирусных частиц.

Вирус иммунодефицита человека поражает главным образом CD 4 -лимфоциты (хелперы), на поверхности которых есть рецепторы, способные связываться с поверхностным белком ВИЧ. Кроме того, ВИЧ проникает в клетки ЦНС, нейроглии, кишечника. Иммунная система организма человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям различных инфекций. Средняя продолжительность жизни инфицированного человека составляет 7-10 лет.

Источником заражения служит только человек — носитель вируса иммунодефицита. СПИД передается половым путем, через кровь и ткани, содержащие вирус иммунодефицита, от матери к плоду.

    Перейти к лекции №8 « Ядро. Хромосомы»

    Перейти к лекции №10 « Понятие об обмене веществ. Биосинтез белков»

По строению клетки живые организмы делят на прокариот и эукариот . Клетки и тех и других окружены плазматической мембраной , снаружи от которой во многих случаях имеется клеточная стенка . Внутри клетки находится полужидкая цитоплазма . Однако клетки прокариот устроены значительно проще, чем клетки эукариот.

Основной генетический материал прокариот (от греч. про – до и карион – ядро) находится в цитоплазме в виде кольцевой молекулы ДНК. Эта молекула (нуклеоид ) не окружена ядерной оболочкой, характерной для эукариот, и прикрепляется к плазматической мембране (рис.1). Таким образом, прокариоты не имеют оформленного ядра. Кроме нуклеоида в прокариотической клетке часто встречается небольшая кольцевая молекула ДНК, называемая плазмидой . Плазмиды могут перемещаться из одной клетки в другую и встраиваться в основную молекулу ДНК.

Некоторые прокариоты имеют выросты плазматической мембраны: мезосомы, ламеллярные тилакоиды, хроматофоры . В них сосредоточены ферменты, участвующие в фотосинтезе и в процессах дыхания. Кроме того, мезосомы ассоциированы с синтезом ДНК и секрецией белка.

Клетки прокариот имеют небольшие размеры, их диаметр составляет 0,3–5 мкм. С наружной стороны плазматической мембраны всех прокариот (за исключением микоплазм) находится клеточная стенка . Она состоит из комплексов белков и олигосахаридов, уложенных слоями, защищает клетку и поддерживает ее форму. От плазматической мембраны она отделена небольшим межмембранным пространством.

В цитоплазме прокариот обнаруживаются только немембранные органоиды рибосомы . По структуре рибосомы прокариот и эукариот сходны, однако рибосомы прокариот имеют меньшие размеры и не прикрепляются к мембране, а располагаются прямо в цитоплазме.

Многие прокариоты подвижны и могут плавать или скользить с помощью жгутиков.

Размножаются прокариоты обычно путем деления надвое (бинарным ). Делению предшествует очень короткая стадия удвоения, или репликации, хромосом. Так что прокариоты – гаплоидные организмы.

К прокариотам относятся бактерии и синезеленые водоросли, или цианобактерии. Прокариоты появились на Земле около 3,5 млрд лет назад и были, вероятно, первой клеточной формой жизни, дав начало современным прокариотам и эукариотам.

Эукариоты (от греч. эу – истинный, карион – ядро) в отличие от прокариот, имеют оформленное ядро, окруженное ядерной оболочкой – двуслойной мембраной. Молекулы ДНК, обнаруживаемые в ядре, незамкнуты (линейные молекулы). Кроме ядра часть генетической информации содержится в ДНК митохондрий и хлоропластов. Эукариоты появились на Земле примерно 1,5 млрд лет назад.

В отличие от прокариот, представленных одиночными организмами и колониальными формами, эукариоты могут быть одноклеточными (например, амеба), колониальными (вольвокс) и многоклеточными организмами. Их делят на три больших царства: Животные, Растения и Грибы.

Диаметр клеток эукариот составляет 5–80 мкм. Как и прокариотические клетки, клетки эукариот окружены плазматической мембраной , состоящей из белков и липидов. Эта мембрана работает как селективный барьер, проницаемый для одних соединений и непроницаемый для других. Снаружи от плазматической мембраны расположена прочная клеточная стенка , которая у растений состоит главным образом из волокон целлюлозы, а у грибов – из хитина. Основная функция клеточной стенки – обеспечение постоянной формы клеток. Поскольку плазматическая мембрана проницаема для воды, а клетки растений и грибов обычно соприкасаются с растворами меньшей ионной силы, чем ионная сила раствора внутри клетки, вода будет поступать внутрь клеток. За счет этого объем клеток будет увеличиваться, плазматическая мембрана начнет растягиваться и может разорваться. Клеточная стенка препятствует увеличению объема и разрушению клетки.

У животных клеточная стенка отсутствует, но наружный слой плазматической мембраны обогащен углеводными компонентами. Этот наружный слой плазматической мембраны клеток животных называют гликокаликсом . Клетки многоклеточных животных не нуждаются в прочной клеточной стенке, поскольку есть другие механизмы, обеспечивающие регуляцию клеточного объема. Так как клетки многоклеточных животных и одноклеточные организмы, живущие в море, находятся в среде, в которой суммарная концентрация ионов близка к внутриклеточной концентрации ионов, клетки не набухают и не лопаются. Одноклеточные животные, живущие в пресной воде (амеба, инфузория туфелька), имеют сократительные вакуоли, которые постоянно выводят наружу поступающую внутрь клетки воду.

Структурные компоненты эукариотической клетки

Внутри клетки под плазматической мембраной находятся цитоплазма . Основное вещество цитоплазмы (гиалоплазма) представляет собой концентрированный раствор неорганических и органических соединений, главными компонентами которого являются белки. Это коллоидная система, которая может переходить из жидкого в гелеобразное состояние и обратно. Значительная часть белков цитоплазмы является ферментами, осуществляющими различные химические реакции. В гиалоплазме располагаются органоиды, выполняющие в клетке различные функции. Органоиды могут быть мембранными (ядро, аппарат Гольджи, эндоплазматический ретикулум, лизосомы, митохондрии, хлоропласты) и немембранными (клеточный центр, рибосомы, цитоскелет).

Мембранные органоиды

сновным компонентом мембранных органоидов является мембрана . Биологические мембраны построены по общему принципу, но химический состав мембран разных органоидов различен. Все клеточные мембраны – это тонкие пленки (толщиной 7–10 нм), основу которых составляет двойной слой липидов (бислой), расположенных так, что заряженные гидрофильные части молекул соприкасаются со средой, а гидрофобные остатки жирных кислот каждого монослоя направлены внутрь мембраны и соприкасаются друг с другом (рис. 3). В бислой липидов встроены молекулы белков (интегральные белки мембраны) таким образом, что гидрофобные части молекулы белка соприкасаются с жирнокислотными остатками молекул липидов, а гидрофильные части экспонированы в окружающую среду. Кроме этого часть растворимых (немембранных белков) соединяется с мембраной в основном за счет ионных взаимодействий (периферические белки мембраны). Ко многим белкам и липидам в составе мембран присоединены также углеводные фрагменты. Таким образом, биологические мембраны – это липидные пленки, в которые встроены интегральные белки.

Одна из основных функций мембран – создание границы между клеткой и окружающей средой и различными отсеками клетки. Липидный бислой проницаем в основном для жирорастворимых соединений и газов, гидрофильные вещества переносятся через мембраны с помощью специальных механизмов: низкомолекулярные – с помощью разнообразных переносчиков (каналов, насосов и др.), а высокомолекулярные – с помощью процессов экзо- и эндоцитоза (рис. 4).

Рис. 4. Схема переноса веществ через мембрану

При эндоцитозе определенные вещества сорбируются на поверхности мембраны (за счет взаимодействия с белками мембраны). В этом месте образуется впячивание мембраны внутрь цитоплазмы. Затем от мембраны отделяется пузырек, внутри которого содержится переносимое соединение. Таким образом, эндоцитоз – это перенос в клетку высокомолекулярных соединений внешней среды, окруженных участком мембраны. Обратный процесс, то есть экзоцитоз – это перенос веществ из клетки наружу. Он происходит путем слияния с плазматической мембраной пузырька, заполненного транспортируемыми высокомолекулярными соединениями. Мембрана пузырька сливается с плазматической мембраной, а его содержимое изливается наружу.

Каналы, насосы и другие переносчики – это молекулы интегральных белков мембраны, обычно образующие в мембране пору.

Кроме функций разделения пространства и обеспечения избирательной проницаемости мембраны способны воспринимать сигналы. Эту функцию осуществляют белки-рецепторы, связывающие сигнальные молекулы. Отдельные белки мембраны являются ферментами, осуществляющими определенные химические реакции.

Ядро – крупный органоид клетки, окруженный ядерной оболочкой и имеющий обычно шаровидную форму. Ядро в клетке одно, и хотя встречаются многоядерные клетки (клетки скелетных мышц, некоторых грибов) или не имеющие ядра (эритроциты и тромбоциты млекопитающих), но эти клетки возникают из одноядерных клеток-предшественников.

Основная функция ядра – хранение, передача и реализация генетической информации . Здесь происходит удвоение молекул ДНК, в результате чего при делении дочерние клетки получают одинаковый генетический материал. В ядре с использованием в качестве матрицы отдельных участков молекул ДНК (генов) происходит синтез молекул РНК: информационных (иРНК), транспортных (тРНК) и рибосомальных (рРНК), необходимых для синтеза белка. В ядре осуществляется сборка субъединиц рибосом из молекул рРНК и белков, которые синтезируются в цитоплазме и переносятся в ядро.

Ядро состоит из ядерной оболочки, хроматина (хромосом), ядрышка и нуклеоплазмы (кариоплазмы).

Рис. 5. Структура хроматина: 1 – нуклеосома, 2 – ДНК

Под микроскопом внутри ядра видны зоны плотного вещества – хроматина. В неделящихся клетках он равномерно заполняет объем ядра или конденсируется в отдельных местах в виде более плотных участков и хорошо окрашивается основными красителями. Хроматин представляет собой комплекс ДНК и белков (рис. 5), большей частью положительно заряженных гистонов .

Количество молекул ДНК в ядре равно числу хромосом. Количество и форма хромосом являются уникальной характеристикой вида. В состав каждой из хромосом входит одна молекула ДНК, состоящая из двух связанных между собой нитей и имеющая вид двойной спирали толщиной 2 нм. Длина ее значительно превышает диаметр клетки: она может достигать нескольких сантиметров. Молекула ДНК заряжена отрицательно, поэтому сворачиваться (конденсироваться) она может только после связывания с положительно заряженными белками-гистонами (рис. 6).

Сначала двойная нить ДНК закручивается вокруг отдельных блоков гистонов, в каждый из которых входит 8 молекул белка, образуя структуру в виде «бусин на нитке» толщиной около 10 нм. Бусины называются нуклеосомами. В результате формирования нуклеосом длина молекулы ДНК уменьшается примерно в 7 раз. Далее нить с нуклеосомами сворачивается, формируя структуру в виде каната толщиной около 30 нм. Затем такой канат, изогнутый в виде петель, прикрепляется к белкам, образующим основу хромосомы. В результате образуется структура с толщиной около 300 нм. Дальнейшая конденсация этой структуры приводит к образованию хромосомы.

В период между делениями хромосома частично разворачивается. В результате этого отдельные участки молекулы ДНК, которые должны экспрессироваться в данной клетке, освобождаются от белков и вытягиваются, что делает возможным считывание с них информации путем синтеза молекул РНК.

Ядрышко – это тип матричной ДНК, отвечающей за синтез рРНК и собранной в отдельных участках ядра. Ядрышко – наиболее плотная структура ядра, оно не является отдельным органоидом, а представляет собой один из локусов хромосомы. В нем образуется рРНК, которая затем образует комплекс с белками, формируя субъединицы рибосом, которые уходят в цитоплазму.

Негистоновые белки ядра образуют внутри ядра структурную сеть. Она представлена слоем фибрилл, подстилающим ядерную оболочку. К ней прикрепляется внутриядерная сеть фибрилл, к которой присоединены фибриллы хроматина.

Ядерная оболочка состоит из двух мембран: внешней и внутренней, разделенных межмембранным пространством. Внешняя мембрана соприкасается с цитоплазмой, на ней могут находиться полирибосомы, а сама она может переходить в мембраны эндоплазматического ретикулума. Внутренняя мембрана связана с хроматином. Таким образом, ядерная оболочка обеспечивает фиксацию хромосомного материала в трехмерном пространстве ядра.

Оболочка ядра имеет круглые отверстия – ядерные поры (рис. 7). В области поры внешняя и внутренняя мембраны смыкаются и образуют отверстия, заполненные фибриллами и гранулами. Внутри поры располагается сложная система из белков, обеспечивающих избирательное связывание и перенос макромолекул. Количество ядерных пор зависит от интенсивности метаболизма клетки.

Эндоплазматический ретикулум , или эндоплазматическая сеть (ЭПР), представляет собой причудливую сеть каналов, вакуолей, уплощенных мешков, соединенных между собой и отделенных от гиалоплазмы мембраной (рис. 8).

Различают шероховатый и гладкий ЭПР. На мембранах шероховатого ЭПР находятся рибосомы (рис. 9), которые синтезируют белки, экскретируемые из клетки или встраивающиеся в плазматическую мембрану. Вновь синтезированный белок сходит с рибосомы и проходит через специальный канал внутрь полости эндоплазматического ретикулума, где он подвергается посттрансляционной модификации, например связыванию с углеводами, протеолитическому отщеплению части полипептидной цепи, образованию S–S-связей между остатками цистеина в цепи. Далее эти белки транспортируются в комплекс Гольджи, где входят либо в состав лизосом, либо секреторных гранул. В обоих случаях эти белки оказываются внутри мембранного пузырька (везикулы).

Рис. 9. Схема синтеза белка в шероховатом ЭПР: 1 – малая и
2 – большая субъединицы рибосомы; 3 – молекула рРНК;
4 – шероховатый ЭПР; 5 – вновь синтезируемый белок

Гладкий ЭПР лишен рибосом. Его основная функция – синтез липидов и метаболизм углеводов. Он хорошо развит, например, в клетках коркового вещества надпочечников, где содержатся ферменты, обеспечивающие синтез стероидных гормонов. В гладком ЭПР в клетках печени находятся ферменты, осуществляющие окисление (детоксикацию) чужеродных для организма гидрофобных соединений, например лекарств.

Рис. 10. Аппарат Гольджи: 1 – пузырьки; 2 – цистерны

Комплекс Гольджи (рис. 10) состоит из 5–10 плоских ограниченных мембраной полостей, расположенных параллельно. Концевые части этих дискообразных структур имеют расширения. Таких образований в клетке может быть несколько. В зоне комплекса Гольджи находится большое количество мембранных пузырьков. Часть из них отшнуровывается от концевых частей основной структуры в виде секреторных гранул и лизосом. Часть мелких пузырьков (везикул), переносящих синтезированные в шероховатом ЭПР белки, перемещается к комплексу Гольджи и сливается с ним. Таким образом комплекс Гольджи участвует в накоплении и дальнейшей модификации продуктов, синтезированных в шероховатом ЭПР, и их сортировке.

Рис. 11. Образование и функции лизосом: 1 – фагосома; 2 – пиноцитозный пузырек; 3 – первичная лизосома; 4 – аппарат Гольджи; 5 – вторичная лизосома

Лизосомы – это вакуоли (рис. 11), ограниченные одной мембраной, которые отпочковываются от комплекса Гольджи. Внутри лизосом достаточно кислая среда (рН 4,9–5,2). Там располагаются гидролитические ферменты, расщепляющие различные полимеры при кислых рН (протеазы, нуклеазы, глюкозидазы, фосфатазы, липазы). Эти первичные лизосомы сливаются с эндоцитозными вакуолями, содержащими компоненты, которые должны расщепляться. Вещества, попавшие во вторичную лизосому, расщепляются до мономеров и переносятся через мембрану лизосомы в гиалоплазму. Таким образом, лизосомы участвуют в процессах внутриклеточного переваривания.

Митохондрии окружены двумя мембранами: наружной, отделяющей митохондрию от гиалоплазмы, и внутренней, отграничивающей ее внутреннее содержимое. Между ними располагается межмембранное пространство шириной 10–20 нм. Внутренняя мембрана образует многочисленные выросты (кристы ). В этой мембране располагаются ферменты, обеспечивающие окисление образовавшихся за пределами митохондрий аминокислот, сахаров, глицерина и жирных кислот (цикл Кребса) и осуществляющие перенос электронов в дыхательной цепи (схема). За счет переноса электронов по дыхательной цепи с высокого на более низкий энергетический уровень часть освобождающейся свободной энергии запасается в виде АТФ – универсальной энергетической валюты клетки. Таким образом, основная функция митохондрий – это окисление различных субстратов и синтез молекул АТФ.

Схема переноса двух электронов по дыхательной цепи

Внутри митохондрии находится кольцевая молекула ДНК, которая кодирует часть белков митохондрии. Во внутреннем пространстве митохондрий (матриксе) находятся рибосомы, похожие на рибосомы прокариот, которые и обеспечивают синтез этих белков.

Тот факт, что митохондрии имеют свою кольцевую ДНК и прокариотические рибосомы, привел к возникновению гипотезы, согласно которой митохондрия является потомком древней прокариотической клетки, когда-то попавшей внутрь эукариотической и в процессе эволюции взявшей на себя отдельные функции.

Рис. 12. Хлоропласты (А) и тилакоидные мембраны (Б)

Пластиды – органоиды растительной клетки, которые содержат пигменты. В хлоропластах содержится хлорофилл и каротиноиды, в хромопластах – каротиноиды, в лейкопластах пигментов нет. Пластиды окружены двойной мембраной. Внутри них располагается система мембран, имеющая форму плоских пузырьков, называемых тилакоидами (рис. 12). Тилакоиды уложены в стопки, напоминающие стопки тарелок. Пигменты встроены в мембраны тилакоидов. Их основная функция – поглощение света, энергия которого с помощью ферментов, встроенных в мембрану тилакоида, преобразуется в градиент ионов Н + на мембране тилакоида. Как и митохондрии, пластиды имеют собственную кольцевую ДНК и рибосомы прокариотического типа. По-видимому, пластиды также являются прокариотическим организмом, живущим в симбиозе с клетками эукариот.

Рибосомы –это немембранные клеточные органоиды, встречающиеся как в клетках про-, так и эукариот. Рибосомы эукариот больше по размеру, чем прокариотические, их размер составляет 25х20х20 нм. Состоит рибосома из большой и малой субъединиц, прилегающих друг к другу. Между субъединицами в функционирующей рибосоме располагается нить иРНК.

Каждая субъединица рибосомы построена из рРНК, плотно упакованной и связанной с белками. Рибосомы могут располагаться в цитоплазме свободно или быть связанными с мембранами ЭПР. Свободные рибосомы могут быть единичными, но могут образовывать полисомы, когда на одной нити иРНК располагается последовательно несколько рибосом. Основная функция рибосом – синтез белка.

Цитоскелет – это опорно-двигательная система клетки, включающая белковые нитчатые (фибриллярные) образования, являющиеся каркасом клетки и выполняющие двигательную функцию. Структуры цитоскелета динамичны, они возникают и распадаются. Цитоскелет представлен тремя типами образований: промежуточными филаментами (нити диаметром 10 нм), микрофиламент ы (нити диаметром 5–7 нм) и микротрубочками . Промежуточные филаменты – неветвящиеся белковые структуры в виде нитей, часто расположенные пучками. Их белковый состав различен в разных тканях: в эпителии они состоят из кератина, в фибробластах – из виментина, в мышечных клетках – из десмина. Промежуточные филаменты выполнят опорно-каркасную функцию.

Микрофиламенты – это фибриллярные структуры, расположенные непосредственно под плазматической мембраной в виде пучков или слоев. Они хорошо видны в ложноножках амебы, в движущихся отростках фибробластов, в микроворсинках кишечного эпителия (рис. 13). Микрофиламенты построены из сократительных белков актина и миозина и являются внутриклеточным сократительным аппаратом.

Микротрубочки входят в состав как временных, так и постоянных структур клетки. К временным относится веретено деления, элементы цитоскелета клеток между делениями, а к постоянным – реснички, жгутики и центриоли клеточного центра. Микротрубочки – это прямые полые цилиндры с диаметром около 24 нм, их стенки образованы округлыми молекулами белка тубулина. Под электронными микроскопом видно, что сечение микротрубочки образовано 13 субъединицами, соединенными в кольцо. Микротрубочки присутствуют в гиалоплазме всех эукариотических клеток. Одна из функций микротрубочек – создание каркаса внутри клеток. Кроме того, по микротрубочкам, как по рельсам, перемещаются мелкие везикулы.

Клеточный центр состоит из двух центриолей, расположенных под прямым углом друг к другу и связанных с ними микротрубочек. Эти органеллы в делящихся клетках принимают участие в формировании веретена деления. Основой центриоли являются расположенные по окружности 9 триплетов микротрубочек, образующих полый цилиндр, шириной 0,2 мкм и длиной 0,3–0,5 мкм. При подготовке клеток к делению центриоли расходятся и удваиваются. Перед митозом центриоли участвуют в образовании микротрубочек веретена деления. Клетки высших растений не имеют центриолей, но у них есть аналогичный центр организации микротрубочек.

Урок

«Органоиды клетки. Особенности клеток прокариот и эукариот»

(Слайд 1)

Цель урока : знакомство с особенностями строениями и функционирования постоянных компонентов клеток (органоидов); сравнение особенностей клеток прокариот и эукариот

Оборудование: мультимедийные презентации «Органоиды клетки», «Клетки прокариот и эукариот», рабочая тетрадь по биологии (11 класс), с.61-64, раздаточный материал

Организационный момент.

Ход урока:

План урока: (Слайд 2 )

    Органоиды клетки

    Немембранные органоиды

    Мембранные органоиды

    Клетки прокариот и эукариот

Изучение нового материала:

    Органоиды клетки

Органоидами (органеллами) (Слайд 3 ) называют постоянные компоненты клетки, выполняющие в ней конкретные функции и обеспечивающие осуществление процессов и свойств, необходимых для поддержания ее жизнедеятельности.

Органоиды могут иметь как мембранное, так и немембранное строение.

Классификация органоидов (Слайд 4) Работа по заполнению схемы классификации: вспоминают материал, изученный в 9 классе (желательна запись в тетрадь).

ЗАДАНИЕ (распечатки на каждой парте): Используя объяснения учителя и материалы учебника, заполнить таблицу:

Органоид

Особенность строения

Наличие нуклеиновых кислот

Немембранные органоиды

Рибосомы

Клеточный центр

Микротрубочки

Микрофиламенты

Хромосомы

Одномембранные органоиды

Эндоплазматическая сеть

Комплекс Гольджи

Лизосомы

Двумембранные органоиды

Митохондрии

Пластиды

    Немембранные органоиды

РИБОСОМЫ (Слайд 5).

Рибосома - важнейший органоид живой клетки сферической или слегка овальной формы, диаметром 100-200 ангстрем, состоящий из большой и малой субъединиц (Слайд 6). Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией . В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (Слайд 7 ) . Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке.

Рибосомы эукариот включают четыре молекулы рРНК

Рибосомы впервые были описаны как уплотненные частицы, или гранулы, клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. Термин "рибосома" был предложен Ричардом Робертсом в 1958 вместо "рибонуклеобелковая частица микросомальной фракции".

КЛЕТОЧНЫЙ ЦЕНТР (ЦЕНТРОСОМА) (Слайд 8).

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.

Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.

МИКРОТРУБОЧКИ (Слайд 9)

Это белковые внутриклеточные структуры, входящие в состав цитоскелета.

Микротрубочки представляют собой цилиндры диаметром 25 нм с полостью внутри. Их длина может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Микротрубочки полярны: на одном конце происходит самосборка микротрубочки, на другом - разборка. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокинез и везикулярный транспорт.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

Микротрубочки в клетке используются в качестве "рельсов" для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными.

МИКРОФИЛАМЕНТЫ (Слайд 10 ).

Сократимые элементы цитоскелета, образованы нитями актина и других сократительных белков. Участвуют в формировании цитоскелета клетки, амебоидном движении и др. Нуклеиновых кислот нет

ХРОМОСОМЫ (Слайд 11 ) – учащиеся отвечают на поставленный вопрос, вспоминая материал предыдущего урока, а затем на слайде открывается ответ.

Органоиды ядра эукариот, каждая хромосома образована одной молекулой ДНК и молекулами белков. Состоит из двух нитей – хроматид, соединенных центромерой. Являются носителями генетической информации.

    Мембранные органоиды

Одномембранные органоиды

ПЛАЗМОЛЕММА (Слайд 12 ) - учащиеся отвечают на поставленный вопрос, вспоминая материал предыдущего урока, а затем на слайде открывается ответ.

Это жидкостно-мозаическую модель, где липидные слои мембраны пронизаны белковыми молекулами. Она обеспечивает разграничительную функцию по отношению к внешней для клетки среде и выполняет транспортную функцию. Нуклеиновых кислот нет.

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ (ЭПС ) (Слайд 13)

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому ) (Нажать кнопкой мышки) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному ) ЭПР (Нажать кнопкой мышки ), принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки. Нуклеиновых кисло нет.

КОМПЛЕКС ГОЛЬДЖИ (ПЛАСТИНЧАТЫЙ КОМПЛЕКС) (Слайд 14 ) – нажать кнопку мыши.

Это мембранная структура эукариотической клетки, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме (Слайд 15). Комплекс Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1898 году (Слайд 16 ).

В цистернах Аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен - цистерны располагающиеся ближе к ядру клетки (цис -Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки - везикулы , отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс -Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

ЛИЗОСОМЫ (Слайд 17 )

Это мембранные пузырьки величиной до 2 мкм. Внутри лизосом содержатся гидролитические ферменты, способные переваривать белки, липиды, углеводы, нуклеиновые кислоты. Лизосомы образуются из пузырьков, отделяющихся от комплекса Гольджи, причем предварительно на шероховатом эн до плазматическом ретикулуме синтезируются гидролитические ферменты.

Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (вторичная лизосома) , где происходит расщепление органических веществ до составляющих их мономеров. Последние через мембрану пищеварительной вакуоли поступают в цитоплазму клетки. Именно так происходит, например, обезвреживание бактерий в клетках крови - нейтрофилах .

Вторичные лизосомы, в которых закончился процесс переваривания, практически не содержат ферментов. В них находятся лишь непереваренные остатки.

Лизосомы участвуют также в разрушении материалов клетки, например запасных питательных веществ, а также макромолекул и целых органелл, утративших функциональную активность (аутофагия ). При патологических изменениях в клетке или ее старении мембраны лизосом могут разрушаться: ферменты выходят в цитоплазму, и осуществляется самопереваривание клетки - автолиз . Иногда с помощью лизосом уничтожаются целые комплексы клеток и органы. Например, когда головастик превращается в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

ВАКУОЛИ

Это крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль (Слайд 18) , которая занимает до 70-90% объема клетки и может быть пронизана тяжами цитоплазмы.

Содержимое вакуолей - клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растений, органа, ткани и состояния клетки. В клеточном соке содержатся соли, сахара (прежде всего сахароза, глюкоза, фруктоза), органические кислоты (яблочная, лимонная, щавелевая, уксусная и др.), аминокислоты, белки. Эти вещества являются промежуточными продуктами метаболизма, временно выведенными из обмена веществ клетки в вакуоль. Они являются запасными веществами клетки.

Помимо запасных веществ, которые могут вторично использоваться в метаболизме, клеточный сок содержит фенолы, танины (дубильные вещества), алкалоиды, антоцианы, которые выводятся из обмена в вакуоль и таким путем изолируются от цитоплазмы.

Танины особенно часто встречаются в клеточном соке (а также в цитоплазме и оболочках) клеток листьев, коры, древесины, незрелых плодов и семенных оболочек. Алкалоиды присутствуют, например, в семенах кофе (кофеин), плодах мака (морфин) и белены (атропин), стеблях и листьях люпина (люпинин) и др. Считается, что танины с их вяжущим вкусом, алкалоиды и токсичные полифенолы выполняют защитную функцию: их ядовитый (чаще горький) вкус и неприятный запах отталкивают растительноядных животных, что предотвращает поедание этих растений.

В вакуолях также часто накапливаются конечные продукты жизнедеятельности клеток (отходы). Таким веществом для клеток растений является щавелевокислый кальций, который откладывается в вакуолях в виде кристаллов различной формы.

В клеточном соке многих растений содержатся пигменты, придающие клеточному соку разнообразную окраску. Пигменты и определяют окраску венчиков цветков, плодов, почек и листьев, а также корнеплодов некоторых растений (например, свеклы).

Клеточный сок некоторых растений содержит физиологически активные вещества - фитогормоны (регуляторы роста), фитонциды, ферменты . В последнем случае вакуоли действуют как лизосомы. После гибели клетки мембрана вакуоли теряет избирательную проницаемость, и ферменты, высвобождаясь из нее, вызывают автолиз клетки.

Функции центральной вакуоли:

    Накопление питательных веществ, метаболитов и пигментов;

    Удаление из цитоплазмы продуктов метаболизма;

    Регуляция водно-солевого обмена;

    Поддержание тургорного давления;

    Участие в разрушении макромолекул и клеточных структур.

Пищеварительные вакуоли (Слайд 19 ) животных клеток содержат литические (расщепляющие) ферменты и пищевые частицы. Здесь идет внутриклеточное пищеварение.

Выделительные вакуоли простейших содержат воду и растворенные в ней продукты метаболизма. Функция – осморегуляция, удаление жидких продуктов метаболизма.

Двумембранные органоиды

МИТОХОНДРИИ (Слайд 20)

Двумембранные органеллы продолговатой формы. Они являются энергетическими станциями клеток. Митохондрии - особые органеллы клетки, основной функцией которых является синтез АТФ - универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счет энзиматических систем митохондрий.

Митохондрии имеют наружную мембрану состоящую из двух слоёв, разделённых пространством в 60-80 ангстрем. От внутреннего слоя в полость митохондрии выступают выпячивания - кристы (нажать кнопку мыши ) . Пространство между кристами заполнено веществом, называемым матриксом (нажать кнопку мыши ).

В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии. Содержат ДНК и РНК.

ПЛАСТИДЫ.

Пластиды - органоиды эукариотических растений и некоторых фотосинтезирующих простейших. Покрыты двойной мембраной. Содержат ДНК и РНК. Совокупность пластид клетки образует пластидом . По окраске и выполняемой функции выделяют три основных типа пластид (Слайд 21 ) :

Лейкопласты - неокрашенные пластиды, как правило, выполняют запасающую функцию. В лейкопластах клубней картофеля накапливается крахмал. Лейкопласты высших растений могут превращаться в хлоропласты или хромопласты.

Хромопласты - пластиды, окрашенные в жёлтый, красный или оранжевый цвет. Окраска хромопластов связана с накоплением в них каротиноидов. Хромопласты определяют окраску осенних листьев, лепестков цветов, корнеплодов, созревших плодов.

Хлоропласты - пластиды, несущие фотосинтезирующие пигменты - хлорофиллы. Имеют зелёную окраску у высших растений, харовых и зелёных водорослей. Набор пигментов, участвующих в фотосинтезе (и, соответственно, определяющих окраску хлоропласта) различен у представителей разных таксономических отделов. Хлоропласты имеют сложную внутреннюю структуру

    Клетки прокариот и эукариот

(в качестве домашнего задания с объяснением задания в классе)

Задание (Слайд 22 ):

    Рассмотреть таблицу 2 на с.118

    Заполнить рабочую тетрадь на с.63-64

    Заполнить таблицу, расставив знаки «+» и «-»

Клеточные структуры

Прокариотическая клетка

Эукариотическая клетка

Клеточная стенка

Плазмолемма

Хромосомы

Эндоплазматическая сеть

Комплекс Гольджи

Лизосомы

Мезосома

Рибосомы

Включения

Информационные источники:

    Гигани О.Б. Общая биология.9-11: Таблицы:схемы/О.Б.гигани. – М.: Гуманитар.изд.центр ВЛАДОС, 2007.

    Кольман Я., Рем К.-Г. Наглядная биохимия: Пер. с нем. - М.: Мир, 2000. http://yanko.lib.ru/books/biolog/nagl_biochem/04.htm

    Википедия - ru.wikipedia.org

    priroda.clow.ru/text/1190.htm – Энциклопедия «Растения и животные»

    biology.asvu.ru/page.php?id=17

    www.college.ru/.../paragraph4/theory.html

    shkola.lv/index.php?mode=lsntheme&themeid=104

Дополнительный материал для учителя (Гигани О.Б, 2007)

Органоид

Строение

Функции

Наличие нуклеиновых кислот

Немембранные органоиды

Рибосомы

Образованы двумя субъединицами (большой и малой), сформированными молекулами рРНК и белков

Участие в синтезе белка

Клеточный центр (центросома)

Состоит из двух центриолей, каждая представляет собой полый цилиндр, образованный девятью триплетами микротрубочек.

Входят в состав митотического аппарата клетки, участвуют в делении клетки

Микротрубочки

Полые цилиндрические структуры

Образуют цитоскелет клетки, веретено деления, центриоли, жгутики и реснички

Микрофиламенты

Сократимые элементы цитоскелета, образованы нитями актина и других сократительных белков

Участие в формировании цитоскелета клетки, амебоидном движении, эндоцитозе, циклозе

Хромосомы

Органоиды ядра эукариотических клеток, каждая хромосома образована одной молекулой ДНК и молекулами белков

Носители генетической информации

Одномембранные органоиды

Плазмолемма (цитолемма)

Эндоплазматическая сеть

    Гладкая (агранулярная) ЭПС

    Шероховатая (гранулярная) ЭПС

Элементарная мембрана, покрывающая клетку снаружи

Система мембран, образующих канальца, пузырьки, цистерны, трубочки. Соединена с плазмолеммой и ядерной мембраной.

На поверхности мембран располагаются ферменты, катализирующие синтез липидов и углеводов.

На поверхности мембран располагаются рибосомы.

Поддержание формы клетки, защита от неблагоприятных внешних воздействий, транспорт веществ в клетку и из нее, рецепторная (благодаря различным молекулам, встроенным в мембрану, воспринимает сигналы окружающей среды)

Транспорт веществ в клетке, разделение клетки на отсеки, посттрансляционная модификация белков.

Синтез липидов и углеводов, накопление и удаление ядовитых веществ

Синтез белков на прикрепленных к мембране рибосомах, объединенных в комплексы - полисомы

Комплекс Гольджи (пластинчатый комплекс)

Строение в клетках разных организмов сильно различается. Структурно-функциональная единица комплекса Гольджи – диктиосома – стопка из 5-20 плоских цистерн, переходящих в сеть трубочек и пузырьков

Модификация веществ; упаковка их в мембранные пузырьки, которые затем используются клеткой или удаляются из нее; синтез некоторых веществ; формирование клеточных мембран; формирование лизосом

Лизосомы

Мембранные пузырьки округлой формы, содержат литические (расщепляющее) ферменты

Участие в формировании пищеварительных вакуолей (внутриклеточное пищеварение); разрушение крупных молекул клетки; лизис (разрушение) отдельных клеточных структур (автолиз) и всей клетки; устранение провизорных органов

    Центральная вакуоль растительной клетки

    Пищеварительные вакуоли животных клеток

    Выделительные вакуоли простейших

Полости, окруженные мембраной и содержащие водянистую жидкость с различными растворенными веществами.

Ограничена тонопластом – мембраной. Заполнена клеточным соком (растворенными органическими и неорганическими веществами, пигментами, метаболитами). Формируется при участии ЭПС.

Накопление питательных веществ, метаболитов и пигментов; удаление из цитоплазмы продуктов метаболизма; регуляция водно-солевого обмена; поддержание тургорного давления; участие в разрушении макромолекул и клеточных структур.

Внутриклеточное пищеварение

Осморегуляция, удаление жидких продуктов метаболизм

Двумембранные органоиды

Митохондрии

Наружная мембрана гладкая, внутренняя – образует выросты – кристы. Внутри находится матрикс – полужидкое вещество, содержащее ферменты, кольцевые молекулы ДНК, молекулы РНК, рибосомы

Синтез АТФ

Пластиды

    Протопластиды

    Хлоропласты

    Хромопласты

    Лейкопласты

Наружная мембрана гладкая, внутренняя мембрана погружена в строму – полужидкое вещество. Содержат кольцевые молекулы ДНК, молекулы РНК и рибосомы

Не имеют окраски

Внутренняя мембрана образует уплощенные мешочки – тилакоиды, в которых располагаются молекулы пигментов (хлорофилла, каротиноидов), группа тилакоидов образует граны

Внутренняя мембрана образует немногочисленные тилакоиды

Пластиды, из которых формируются все виды пластид (хлоропласты, лейкопласты, хромопласты)

Фотосинтез, могут превращаться в хромопласты

Окраска лепестков цветков, плодов, листьев, иногда корней

Синтез и накопление крахмала, масло, белков, могут превращаться в хлоропласты и хромопласты

Сравнительная характеристика прокариотических и эукариотических клеток

Клеточные структуры

Прокариотическая клетка

Эукариотическая клетка

Клеточная стенка

У клеток растений и грибов

Плазмолемма

Хромосомы

- (есть нуклеотид – 1 кольцевая молекула ДНК)

Эндоплазматическая сеть

Комплекс Гольджи

Лизосомы

Двумембранные органоиды (пластиды, митохондрии)

Мезосома

Рибосомы

Включения

Прокариотические клетки были первыми живыми организмами, появившимися на Земле, они имеют наиболее простое строение. На сегодняшний день к прокариотам (доядерным) относят бактерий и архей, все они одноклеточные организмы (редко образуют колонии). Цианобактерий (они же синезеленые водоросли) относят к бактериям в ранге типа.

Прокариоты - это нетаксономическая группа организмов, объединяющая бактерий и архей по признаку отсутствия у них ядра. Бактерии и археи выделяются в рангах разных надцарств (доменов), они отличаются между собой многими биохимическими процессами и, как считается, имеют разные эволюционные пути. Кроме них, третьим надцарством являются эукариоты.

Клетки прокариотического типа мельче клеток эукариот.

У них нет ядра, настоящих мембранных органелл, клеточного центра. У ряда групп бактерий есть впячивания цитоплазматической мембраны, которые выполняют различные функции за счет локализации на них тех или иных ферментов. У цианобактерий есть фотосинтетические мембраны (везикулы, тилакоиды, хроматофоры), образованные из клеточной мембраны. Они могут сохранять с ней связь, а могут быть и обособленными.

Генетический материал прокариот находится в цитоплазме. Основной его объем сосредоточен в нуклеоиде - кольцевой молекуле ДНК, в одном месте прикрепленной к цитоплазматической мембране. Она не связана с белками гистонами как у эукариот. В прокариотических клетках по-другому регулируется реализация генетической информации. Кроме нуклеоида есть еще плазмиды (мелкие кольцевые молекулы ДНК). Почти вся ДНК транскрибируется (в то время как у эукариот обычно менее половины).

Прокариоты почти всегда гаплоидны. Новые клетки образуются путем бинарного деления, перед этим нуклеоид удваивается. У прокариот нет процессов митоза и мейоза.

Их рибосомы мельче, чем эукариот.

Цитоплазма прокариот почти неподвижна. Не характерно амебоидное движение.

Поступление в прокариотическую клетку веществ осуществляется за счет осмоса.

Есть автотрофы и гетеротрофы. Автотрофный способ питания осуществляется не только путем фотосинтеза, но и за счет хемосинтеза (энергия поступает не от солнечного света, а от химических реакций окисления различных веществ).

Согласно симбиотической гипотезе, в процессе эволюции от внедрившихся в другую клетку определенных групп прокариотических клеток произошли митохондрии и пластиды.

Клетки бактерий отличаются разнообразной формой (палочковидные, округлые, извитые и др.). У них есть сложная клеточная оболочка (состоящая из клеточной стенки, капсулы, слизистого чехла), жгутики и ворсинки.

Прочитаем информацию.

Клетка - сложная система, состоящая из трех структурно-функциональных подсистем поверхностного аппарата, цитоплазмы с органоидами и ядра.

Прокариоты (доядерные) - клетки, не обладающие, в отличие от эукариотов, оформленным клеточным ядром и другими внутренними мембранными органоидами.

К прокариотическим клеткам относят клетки бактерий, (сине-зеленые водоросли), .

Строение прокариотических клеток

Структура

Строение и состав

Функции структуры

Плазматическая мембрана

У некоторых микроорганизмов - выпячивания внутрь клетки, образующие стопки плоских мешочков (мезосомы)

У цианобактерий и некоторых пурпурных бактерий - множество мембранных

1.транспортная

2.защитная

5.восприятие сигналов внешней среды

6.участие в иммунных процессах

7.обеспечение поверхностных свойств клетки

Неоформленное ядро, т.е. нуклеарная область, не имеет ядерной мембраны (оболочки).

Содержит одну кольцевую молекулу ДНК - нуклеотид, которую называют бактериальной хромосомой.

Кроме нуклеотида часто встречается небольшая кольцевая молекула ДНК - .

Хранение и реализация наследственной информации, и передача ее дочерним поколениям.

Цитоплазма

Очень мало мембранных органоидов (ЭПС, аппарат Гольджи, пластиды, митохондрии).

Очень много рибосом более мелких, чем у эукариотов.

Синтез белков

Рибосомы

Мельче по размерам, чем у эукариот и расположены в цитоплазме свободно (не образуют ).

Синтез белков

Клеточная стенка

Состоит из комплексов белков и олигосахаридов, уложенных слоями.

Белковые нити, не образуют микротрубочек. Состоят из трех структур , и .

Движение

Муреин (пептидогликан) — это важнейший компонент клеточной стенки бактерий, который выполняет опорную и защитную функции. Он имеет сетчатую структуру и образует жёсткий наружный каркас клетки. Состоит из углеводов и белков. Вещества, убивающие бактерий (лизоцим, антибиотики), разрушают муреин или нарушают его образование.

Цианобактерии (сине-зеленые водоросли) - группа крупных грамотрицательных бактерий, способных к фотосинтезу.

Археи - группа микроскопических одноклеточных орагнизмов-прокариот, резко отличающихся по ряду физиолого-биохимических свойств от истинных бактерий (эубактерий). Группу архебактерий выделили в 1977. Среди них нет возбудителей инфекционных болезней.

Тилакоиды - ограниченные мембраной компартменты внутри хлоропластов и цианобактерий. В тилакоидах происходят светозависимые реакции фотосинтеза.

Рецепция в физиологии - осуществляемое рецепторами восприятие раздражителей и преобразование в нервное возбуждение.

Полисома (полирибосома) - структура клеточной цитоплазмы, которая состоит из нескольких рибосом, соединенных с помощью молекул информационной (матричной) РНК.

Жгутики бактерий - состоят из трех субструктур:

  • филамент (фибрилла, пропеллер) - полая белковая нить толщиной 10-20 нм и длиной 3-15 мкм.
  • крюк - более толстое, чем филамент (20-45 нм), белковое образование.
  • базальное тело - образование, расположенное у основания жгутика. Имеет форму цилиндра. Длина около 0,5 мкм.

Плазмиды - дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы ДНК.

Используемая литература:

1.Биология: полный справочник для подготовки к ЕГЭ. / Г.И.Лернер. - М.: АСТ: Астрель; Владимир; ВКТ, 2009

2.Биология: учеб. для учащихся 11 класса общеобразоват. Учреждений: Базовый уровень / Под ред. проф. И.Н.Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2008.

3.Биология для поступающих в вузы. Интенсивный курс / Г.Л.Билич, В.А.Крыжановский. - М.: Издательство Оникс, 2006.

4.Общая биология: учеб. для 11 кл. общеобразоват. учреждений / В.Б.Захаров, С.Г.Сонин. - 2-е изд., стереотип. - М.: Дрофа, 2006.

5.Биология. Общая биология. 10-11 классы: учеб. для общеобразоват. учреждений: базовый уровень / Д.К.Беляев, П.М.Бородин, Н.Н.Воронцов и др. под ред. Д.К.Беляева, Г.М.Дымшица; Рос. акад. наук, Рос. акад. образования, изд-во «Просвещение». - 9-е изд. - М.: Просвещение, 2010.

6.Биология: учеб.-справ.пособие / А.Г.Лебедев. М.: АСТ: Астрель. 2009.

7.Биология. Полный курс общеобразовательной средней школы: учебное пособие для школьников и абитуриентов / М.А.Валовая, Н.А.Соколова, А.А. Каменский. - М.: Экзамен, 2002.

Используемые Интернет-ресурсы:

Википедия. Жгутик

Опорно-двигательные структуры клетки





Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top