Расчет на опрокидывание здания. Фундамент: расчет возможного опрокидывания Что такое опрокидывающий момент

Расчет на опрокидывание здания. Фундамент: расчет возможного опрокидывания Что такое опрокидывающий момент

Отыскание Мопр сводиться к определению такой горизонтали AF которая ограничивает площадь сегмента BCF, равную площади OAB. При этом определяеться и приельный динамический угол крена Ɵмах. Момент больше ОА, будет больше востонавливающего и судно опрокинеться.

23.Определение динамического опрокидывающего момента при прямом начальном положении по диаграмме Lд.

Для определения опрокидывающего момента нужно провести касательную к ДДО. Точка соприкосновения даст М опр как ординату касательной. При этом абсцисса точки касания определит наибольший динамический угол крена Ɵопр.

24. Определение опрокидывающего момента при качке судна по диаграмме lст

Остойчивость на больших углах крена . По мере увеличения крена судна восстанавливающий момент сначала возрастает, затем уменьшается, становится равным нулю и далее не только не препятствует наклонению, а наоборот, способствует ему (рис. 6).

Рис. 6. Диаграмма статической остойчивости.

Так как водоизмещение для данного состояния нагрузки постоянно, то восстанавливающий момент изменяется только вследствие изменения плеча поперечной остойчивости l ст . По расчетам поперечной остойчивости на больших углах крена строят диаграмму статической остойчивости , представляющую собой график, выражающий зависимость l ст от угла крена. Диаграмму статической остойчивости строят для наиболее характерных и опасных случаев нагрузки судна.

25. Определение опрокидывающего момента при качке судна по диаграмме ld

Из точки А проводится касательная АС к диаграмме динамической остойчивости, и от точки А на прямой, параллельной оси абсцисс, откладывается отрезок АВ, равный одному радиану. Из точки В восстанавливаем перпендикуляр ВЕ до пересечения с касательной АС в точке Е. Отрезок ВЕ равен плечу lопр опрокидывающего момента, если диаграмма

построена в масштабе плеч. Опрокидывающий момент

Mc = 9, 81 ·∆ · lопр, кН × м.

26. Связь диаграмм статической и динамической остойчивости

Диаграммы статической и динамической остойчивости

Обычно в судовых условиях строят диаграмму динамической остойчивости по известной диаграмме статической остойчивости, схема вычислений плеч динамической остойчивости приведена в табл:

Диаграмма динамической остойчивости

При построении диаграммы динамической остойчивости по результатам вышеприведенной таблицы динамический кренящий момент принимают постоянным по углам крена. Следовательно, его работа находится в линейной зависимости от угла θ, а график произведения f(θ) = 1кр*θ изобразится на диаграмме динамической остойчивости прямой наклонной линией, проходящей через начало координат. Для ее построения достаточно провести вертикаль через точку, отвечающую крену в 1 радиан и отложить на этой вертикали заданное плечо 1кр. Прямая, соединяющая таким образом точку Е с началом координат О представит искомый график f(θ) =1кр*θ , т. е. график работы кренящего момента, отнесенный к силе веса судна Р. Эта прямая пересечет диаграмму динамической остойчивости в точках А и В. Абсцисса точки А определяет угол динамического крена θ, при котором имеет равенство работ кренящего и восстанавливающего моментов.

Точка В практического значения не имеет.

Динамическая устойчивость электропривода – это способность системы электропривода восстанавливать равновесие при резком изменении режима ее работы.

Асинхронный двигатель при медленно изменяющемся возмущении можно постепенно нагружать до значения опрокидывающего момента.

Но при быстром изменении возмущения динамический момент , алгебраическискладываться с электромагнитным моментом двигателя .

За счет алгебраического сложения динамического момента с электромагнитным моментом система привода развивает момент сверх критического (максимального) момента двигателя при уменьшении скорости и уменьшает развиваемый приводом момент, до значения меньше – критического, при возрастании скорости системы электропривода.

Таким образом, соотношение перестает быть критерием устойчивой работы электропривода. Инерция и запасенная системой энергия имеет большее влияние на работу привода.

Падение напряжения сети

Падение напряжения сети является наиболее характерным резким изменением режима работы электропривода. Падение напряжения в судовой сети может возникнуть: при пуске мощных двигателей или отключении одного из параллельно работающих генераторов.

Двигатель, работающий при статическом моменте на естественной механической характеристике в точке «А» (рис 12-3а.), при снижении напряжения с той же скоростью перейдет в точку «В» на искусственной характеристике.

Под действием возникшего динамического момента, величина которого определяется длиной отрезка «А – В», двигатель будет затормаживаться в соответствии с уравнением движения до полной остановки, точка «D» на искуственной характеристке (ИМХ):

(12-3)

Воспользовавшись соотношенияими: иполучим:

(12-4)

Влияние величины напряжения сети на устойчивость электропривода. Опрокидывание электродвигателя

Рассмотрим влияние напряжения сети на устойчивость электропривода переменного тока.

При глубоких провалах напряжения сети работа асинхронного двигателя становится неустойчивой – двигатель может опрокинуться.

Под опрокидыванием понимают аварийный режим асинхронного двигателя; при котором он останавливается или реверсирует . Условие опрокидывания такое:

М"< М ,

где М" - критический момент двигателя при пониженном напряжении;

М - статический момент механизма.

Иначе говоря, опрокидывание наступит, если критический момент двигателя станет меньше статического момента механизма .

Напомним, что критический момент асинхронного двигателя пропорционален квадрату напряжения:

М = с, (12-5)

где U и f - соответственно напряжение и частота тока питающей сети.

Отсюда следует, что при допускаемом Правилами Регистра провале напряжения

сети, равном 15% (U " = 0,85U ) , новое, пониженное значение критического момента составит

М" = М= (0,85)М= 0,7225 М≈ 0,7 М. (12-6)

Последствия опрокидывания зависят от характера статического момента механизма, а именно:

1. при реактивном статическом моменте двигатель останавливается и переходит в режим стоянки под током (насосы, вентиляторы Рис.12.3а);

2. при активном статическом моменте двигатель вначале останавливается, затем реверсирует и под действием веса груза начинает разгоняться с возрастающей скоростью в направлении на спуск (грузоподъемные механизмы и якорно-швартовные устройства Рис.12.3б).

Рис.12.3а Рис. 12.3б

Рис. 12.3. Переходные процессы при опрокидывании двигателя: а – при реактивном статическом моменте (насос, вентилятор); б – при активном статическом моменте (лебедка, брашпиль).

Рассмотрим процесс опрокидывания двигателя при реактивном статическом моменте исполнительного механизма (Рис.12.3а). До провала напряжения двигатель работает на естественной механической характеристике (ЕМХ), в точке «А» с постоянной скоростью ω.

При провале напряжения двигатель переходит из точки «А» на естественной механической характеристике (ЕМХ) в точку «В» на искусственной механической характеристике (ИМХ) с той же скоростью ω.Скорость электродвига­ теля не успевает измениться вследствие инерции движущихся частей электропри­вода, поэтому в точке «В» скорость такая же, как и в точке «А».

Поскольку в точке «В» момент двигателя М меньше момента механизма М , двигатель начинает уменьшать скорость до точки «С». В этой точке критический (максимальный) момент двигателя М "< М , поэтому двигатель продолжит уменьшать скорость до точки Д.

В точке Д двигатель остановится и будет стоять под током с моментом короткого замыкания М до тех. пор, пока не сработает тепловая защита.

Рассмотрим процесс опрокидывания двигателя при активном статическом моменте исполнительного механизма . Механизмы с активным статическим моментом (грузовые лебёдки, брашпили) при опрокидывании реверсируют под действием веса груза или якоря (Рис.12.3б).

В случае провала напряжения судовой сети переходный процесс сначала протекает так же, как в случае с реактивным статическим моментом (Рис.12.3а). Однако после перехода двигателя в точку «Д», двигатель не остановится , а сразу реверсирует и разгоняется в обратном направлении (точки F, F, F).

Поскольку знак электромагнитного момента двигателя не из­ менился , т.е. направлен в сторону подъёма груза, двигатель перейдёт в режим тормозного спуска и будет стараться уменьшить скорость спуска груза.

Однако при этом скорость спуска груза будет непрерывно увеличиваться . Это объясняется тем, что величина тормозного электромагнитного момента двигателя по мере перехода из точки F в точку Fи далее в точку Fнепрерывно уменьшается (М < М < М ) а величина активного статического момент не изменяется и направлена в сторону спуска груза.

Если электродвигатель своевременно не отключить от сети и не затормозить механическим тормозом, такой режим приведёт к аварии.

При решении задач на опрокидывание рассматривается та предельное положение, в котором тело находится в состоянии неустойчивого равновесия, т. е. когда оно готово перейти из состояния покоя в движение. Всякое незначительное изменение элементов конструкции или сил, действующих на эту конструкцию, ведет к опрокидыванию (вращению) конструкции вокруг некоторой оси, называемой осью опрокидывания, перпендикулярной плоскости чертежа. Условием равновесия такого тела (конструкции) является равенство нулю суммы моментов относительно точки пересечения оси опрокидывания с плоскостью чертежа всех заданных (активных) сил, действующих на тело:

При составлении уравнения следует помнить, что реакции опор в это уравнение не входят, так как при предельном положении конструкция опирается только на те опоры, через которые проходит ось опрокидывания. Величины, которые при этом определяются из уравнения имеют критические (максимальные или минимальные) значения и для обеспечения запаса устойчивости должны быть при конструировании соответственно уменьшены (те, для которых найдено максимально возможное при равновесии значение) или увеличены (те, для которых найдено минимально возможное при равновесии значение).

Часть активных сил, действующих на тело, создает пары, которые стремятся опрокинуть тело. Сумма моментов таких сил, относительно оси опрокидывания называется моментом опрокидывания:

Другая часть активных сил создает пары, которые стремятся возвратить тело в первоначальное положение.

Сумма моментов таких сил относительно оси опрокидывания называется моментом устойчивости:

Отношение абсолютного значения момента устойчивости к абсолютному значению момента опрокидывания называется коэффициентом устойчивости:

Задача 15. Водонапорная башня состоит из цилиндрического резервуара высотой диаметром укрепленного на четырех симметрично расположенных столбах, наклонных к горизонту (рис. 48). Дно резервуара находится на высоте над уровнем опор; вес башни давление ветра рассчитывается на площадь проекции поверхности резервуара на плоскость, перпендикулярную к направлению ветра, причем удельное давление ветра принимается равным Определить необходимое расстояние между основаниями столбов.

Решение. 1. Рассматриваем равновесие водонапорной башни (рис. 49). Так как требуется определить критическое значение расстояния между основаниями столбов, а именно то считаем, что башня находится в состоянии неустойчивого равновесия, т. е. при малейшем уменьшении этого расстояния башня опрокинется под действием ветра, вращаясь вокруг шарнира А против направления движения часовой стрелки.

Следовательно, в положении неустойчивого равновесия нужно считать, что башня опорами В только касается земли, но не давит на землю,

2. Изображаем активные силы, действующие на башню. Сила вес башни и сила давление ветра на резервуар.

Общие сведения об устойчивости крана

Устойчивость – это способность крана противодействовать опрокидывающим его моментам от силы тяжести поднимаемого груза, ветровой нагрузки, собственного веса элементов крана, динамических нагрузок и уклона.

Устойчивость крана определяют для наиболее неблагоприятных условий его работы.

Ребро опрокидывания – линия, относительно которой может произойти потеря устойчивости.

При проверке устойчивости определяют коэффициент устойчивости машины и сравнивают его с допустимым значением.

М в – восстанавливающий момент

М опр – опрокидывающий момент.

Для кранов определяют грузовую и собственную устойчивость машины и сравнивают ее с допустимыми значениями при подъеме максимального груза с учетом всех допустимых воздействий (уклон, ветер, инерция).

К у 1,15 (с учетом всех нагрузок)

К у 1,4 (с учетом основных нагрузок)

Расчет устойчивости производится для следующих случаев: при работе крана с грузом (грузовая устойчивость), нерабочего состояния (собственная устойчивость), внезапного снятия нагрузки с крана (обрыв груза), монтажа (демонтажа) крана.

Грузовая устойчивость – способность крана при работе противостоять действию всех внешних нагрузок, стремящих опрокинуть его в сторону стрелы.

Собственная устойчивость – способность крана в нерабочем состоянии противостоять действию нагрузок с учетом наклона пути и силы ветра, стремящегося опрокинуть кран в сторону, противоположную стреле.

Для характеристики устойчивости крана применяют коэффициенты грузовой К гр и собственной К соб устойчивости, определяемые по правилам и формулам.

Грузовую устойчивость проверяют как для максимального, так и для минимального вылета.

Собственную устойчивость кранов с маневровым изменением вылета контролируют при положении стрелы на максимальном вылете.

Устойчивость кранов с установочным изменением вылета устанавливают для положения, когда стрела поднята до минимального вылета.



Правилами Госгортехнадзора предписывается по окончании работы закрепить краны противоугонными устройствами за рельсы. При этом усилие от закрепления за рельсы при расчете собственной устойчивости не учитывается. Оно идет в запас устойчивости крана.

1. Ознакомиться с общими сведениями об устойчивости машин.

2. Определить удерживающий (восстанавливающий) момент крана.

3. Определить опрокидывающие моменты:

От груза

От сил инерции, возникающих при подъеме груза

От силы ветра, действующей на кран

От силы ветра, действующей на груз

От сил инерции, возникающих при движении крана с грузом.

4. Определить устойчивость крана, работающего на горизонтальной площадке при участии только основных нагрузок.

5. Определить грузовую и собственную устойчивость крана

6. Сделать выводы.

7. Ответить на вопросы теста.


Методика расчета:

Определение удерживающего момента, Нм

М в = G кр ((b+c) cos a – h 1 sina ),

где G кр – вес крана, Н. (G = m g)

b – расстояние от оси вращения крана до ребра опрокидывания, м

с – расстояние от оси вращения до центра тяжести крана, м

h 1 – высота центра тяжести, м

α – угол наклона крана, град

2. Определение опрокидывающих моментов, Нм

Момент от груза:

М гр = G гр (а – b),

где G гр – вес максимального рабочего груза, Н

а – расстояние от точки подвеса до оси вращения, м

М гр =

Момент от сил инерции, возникающих при подъеме груза:

М гр ин = G гр (а – b) ,

Где V – скорость подъема (опускания) груза, м/с

t – время неустановившегося режима работы, с

М гр ин =

Момент от силы ветра, действующей:

на кран: М в кр = F в кр Н,

М в кр =

на груз:М в гр = F в гр Н 1 ,

М в гр =

Где F в – сила ветра, действующая на кран (груз), Н

F в = p K a K p S,

р – давление ветра, Н/м 2

К а – коэффициент аэродинамического сопротивления

К а = 1,4 - для решетчатого тела (кран)

К а = 1,2 – для сплошного тела (груз)

Н и Н 1 – плечи ветровой нагрузки на кран и груз, м

К р – коэффициент решетчатости

К р = 1 – для сплошного тела (груз)

К р = 0,3 – 0,4 – для решетчатого тела (кран)

S – подветренная площадь крана (груза), м 2

F в кр = р К а К р S кp =

F в гр = р К а К р S гр =

F´ в кр = р´ K a K p S кp =

Момент от сил инерции, возникающий при движении крана с грузом:

М гк = h + h 1 ,

где V 1 – скорость передвижения крана, м/с

t 1 – время неустановившегося режима работы крана, с

h 1 – высота центра тяжести крана, м

h – расстояние от опорной поверхности до точки подвеса груза, м

М гк =

Момент от центробежных сил, возникающих при вращении поворотной части. М ц – пренебрегаем.

3. Определяем устойчивость крана, работающего на горизонтальной площадке при участии только основных нагрузок:

К у1 = ≥ 1,4

K y 1 = ≥ 1,4

4. Определяем грузовую устойчивость крана:

≥ 1,15

М опр = М гр + М гр ин + М гк + М в кр + М в гр =

K y 2 = ≥ 1,15

Условие выполняется (не выполняется)

5. Определяем собственную устойчивость:

К у3 = ≥ 1,15

K y 3 = ≥ 1,15

Условие выполняется (не выполняется)

Вывод: (отразить возможные пути повышения устойчивости крана, особенно в случае, когда не выполняется хотя бы одна проверка).


Исходные данные для расчёта

Параметры Номер варианта
Марка крана КБ-100.32 КБ-200.40 КБ-260.60 КБ-400.50 КБ-125.40 КБ-160.40 КБ-630.80 КБ-1 КБ-2 КБ-3 КБ-4 КБ-5 КБ-6 КБ-7 КБ-8
Масса груза, т
Масса крана, т
Угол наклона площадки, α ˚ 1,5 1,5 1,5 1,5 1,5
Высота центра тяжести, h 1 ,м
Расстояние от оси вращения крана до ребра опрокидывания, b, м 1,2 1,5 1,65 1,9 1,2 1,3 1,2 1,2 1,4 1,7 1,8
Расстояние от оси вращения до центра тяжести крана, с,м 0,08 0,1 0,13 0,15 0,09 0,1 0,15 0,05 0,07 0,07 0,09 0,12 0,14 0,15 0,15
с´, м 0,4 0,45 0,6 0,8 0,4 0,43 0,8 0,3 0,4 0,4 0,5 0,7 0,8 0,8 0,95
Расстояние от оси вращения крана до точки подвеса груза, а, м
Плечи ветровых нагрузок, действующих: – на груз, Н 1 , м
– на кран, Н=Н 2 , м
Скорость подъёма груза, V, м / мин
Время неустановившегося режима работы, t = t 1 , c
Подветренная площадь: – крана, S кр, м 2
– груза, S гр, м 2
Давление ветра, р, Па: – для схемы «а» - р
– для схемы «б» - р΄
Расстояние от опорной площадки до головных блоков стрелы,h, м 21ё
Скорость передвижения крана, V 1 , м / мин

Методика расчёта

а) на сдвиг

Равнодействующая нормативных вертикальных сил в уровне подошвы фундамента

ΣN II = 1463,56 кН (см.2.3)

Нормативная сдвигающая сила F h =22 кН

Расчётная удерживающая сила F h с = f · ΣN I или ΣS i ;

f0,3 - коэффициент трения грунта

Сумма расчётных усилий ΣN I =γ n ·ΣN II ; γ n =0,9.

ΣN I =0,9·1463,56=1317,2 кН;

F h с = 0,3·1317,2 = 395,2 кН

Расчётная сдвигающая сила F h = γ n · F h ; F h = 1,2 · 22=26,4 кН

Устойчивость обеспечивается, если F h F h с

F h = 26,4< F h с = 395,2кН

б) на опрокидывание

Опрокидывающий момент от нормативных нагрузок; от расчётных нагрузок

М о = М II + F h · h ф М о = γ n · М о ; γ n = 1,2 ;

М о = 90 +22·1,5=12 кНм М о = 1,2 · 123=147,6 кНм

Удерживающий момент от нормативных нагрузок

Муд = 0,5в · ΣN

Муд = 0,5·3· 1463,56.=2195,3 кНм

Удерживающий момент от расчётных нагрузок

Муд I = 0,5в · γ n ΣN II , γ n = 0,9

Муд I = 0,5·3 · 0,9·1463,56=1975,8 кНм;

Устойчивость опрокидыванию обеспечивается, если выполняется условие

М о < М уд I

М о = 147,6 < М уд I =1975,8 кНм

Устойчивость против опрокидывания обеспечена.

2.7. Расчёт на прочность конструкции фундамента

В связи с применением типовой конструкции фундамента необходимость в проверке прочности отпадает.

  1. Проектирование свайного фундамента.

    1. Выбор конструкций свай и ростверка.

Согласно схеме рис. на с.11 задания с колонны на фундамент передаются вертикальные, горизонтальные нагрузки и момент. Поэтому минимальное количество свай целесообразно принять 4 е. Тогда в каждой свае воздействие момента незначительно. Внешний момент воспринимается парой сил. (см. схему)

ΔN M =

3d с6d (d – размер поперечного сечения сваи). При задних нагрузках (см. 1.3) целесообразно принять с =3d, d= 0,35 м. (Минимальное сечение железобетонных сплошных свай 20×20см)

Тогда размеры ростверка в плане а р = в р = 3d + d +2×0,15м

а р = в р =3 · 0,35 + 0,35+2 · 0,15 = 1,7м

Для надёжной заделки свай в железобетонном ростверке в верхних концах свай оголяется арматура на участке длиной - 0,4м (см. схему). Откуда рекомендуемая высота ростверка h р = 0,6 ÷ 0,8 м

h р ≈ 0,6 ÷ 0,8 м

Типовые железобетонные сваи сечением 35×35см могут быть длиной от 8м (см. с. 10,11 ).

В отдельных случаях возможна их длина до 16м, в случае необходимости можно применять и более длинные сваи с большим поперечным сечением.

Принимаем в нашем случае ориентировочно свайный фундамент с размерами, показанными на схеме рис.3, где могут быть применимы заводские сваи длиной 8 ÷ 16 м.

Принимаем сваи длиной 9м. Объём железобетонного ростверка

V p = a p ×b · h p

V p = 1,7×1,7 × 0,6 =1,734м 3

Объём железобетонных свай

V св = 4 · 0,35 · 0,35 · 14 =6,86 м 3

Вес ростверка F vp = γ жб · V p

Вес свай F v с = γ жб · V св

γ жб 24 кН/ м 3 - удельный вес железобетона

F vp = 24 · 1,734 = 41,616кН

F v с = 24 · 6,86 = 164,64 кН

      Определение несущей способности сваи

а) по грунту

Нижние концы свай упираются не в cкальные, а рыхлые осадочные породы (см. с. 17 задание), поэтому сваи – висячие.

Несущую способность висящих свай F d определяем в соответствии со СНиП (cм. с. 14 )

F d = γ с (γ с R ·R·А +uΣγ с f · f i · h i)

Применим забивные сваи, тогда

γ с, γ с R , γ с f - коэффициенты надёжности могут быть равными 1.

R – расчётное сопротивление грунта под нижним концом сваи (см.с. 37).

f i – расчётное сопротивление грунта вследствие трения по боковой поверхности сваи (см. с.38).

А, u – площадь поперечного сечения сваи и его периметр.

А = d 2 ; u u = 4d

А = 0,35 × 0,35 = 0,1225м 2

u = 4 · 0,35 = 1,4 м.

Величины R и f i следует принимать по таблицам с.37, 38 для грунтов на определённой глубине.

Удобно разбить длину сваи на отрезки ℓ i 2м, как показано на схеме и там показать величины R и f i , которые потом подставить в расчётную формулу для подсчёта F d

Величина R для грунта 2 го слоя на уровне нижних концов свай.

Величины f i на уровне середины отрезков h i для грунтов на соответствующих глубинах z i

F d =1653·0,1225+1,4(1,9·30+2·38+1,4·30,4+1,4·32,1+1,3·33,225+1,0·33,55+1,0·34,48+1,0·35,28+1,0·36,08+1,0·36,88+1,0·37,68)=871,2 кН




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top