Расчет на опрокидывание здания. Опрокидывание эектродвигателя Общие сведения об устойчивости крана

Расчет на опрокидывание здания. Опрокидывание эектродвигателя Общие сведения об устойчивости крана

Влияние на устойчивость электропривода напряжения сети.

Рассмотрим влияние напряжения сетина устойчивость электропривода перемен

ного тока.

При глубоких провалах напряжения сети работа асинхронного двигателя становит

ся неустойчивой – двигатель может опрокинуться.

Под опрокидыванием понимают аварийный режим асинхронного двигателя; при ко-

тором он останавливается или реверсирует. Условие опрокидывания такое:

М"< М ,

где М" - критический момент двигателя при пониженном напряжении;

М - статический момент механизма.

Иначе говоря, опрокидывание наступит, если критический момент двигателя станет меньше статического момента механизма.

Напомним, что критический момент асинхронного двигателя пропорционален квадрату напряжения:

где U и f - соответственно напряжение и частота тока питающей сети.

Отсюда следует, что при допускаемом Правилами Регистра провале напряжения

сети, равном 15% (U" = 0,85U ) , новое, пониженное значение критического момента составит

М" = М= (0,85)М= 0,7225 М≈ 0,7 М.

Последствия опрокидывания зависят от характера статического момента механиз

ма, а именно:

1. при реактивном статическом моменте двигатель останавливается и переходит в режим стоянки под током (насосы, вентиляторы);

2. при активном статическом моменте двигатель вначале останавливается, затем реверсирует и под действием веса начинает разгоняться в направлении на спуск с возра

стающей скоростью (грузоподъемные механизмы и якорно-швартовные устройства).

Рис. 8.11. Переходные процессы при опрокидывании двигателя: а – при реактивном статическом моменте (насос, вентилятор); б – при активном статическом моменте (лебед-

ка, брашпиль)

Рассмотрим процесс опрокидывания двигателя при реактивном моменте механизма

(рис. 8.11, а).

До провала напряжения двигатель работает на естественной механической характе-

ристике (ЕМХ) в точке А с постоянной скоростью ω.

При провале напряжения двигатель переходит из точки А на ЕМХ в точку В на искусствен

ной механической характеристике (ИМХ). Скорость электродвига­теля не успевает изме-

ниться вследствие инерции движущихся частей электропри­вода, поэтому в точке В скорость такая же, как и в точке А.

Поскольку в точке В момент двигателя Мменьше момента механизма М, двига

тель начинает уменьшать скорость до точки С. В этой точке критический (максимальный) мо-

мент двигателя М"< М, поэтому двигатель продолжит уменьшать скорость до точки Д.

В этой точке двигатель остановится и будет стоять под током с моментом короткого за-

мыкания Мдо тех. пор, пока не сработает тепловая защита.


Механизмы с активным статическим моментам (грузовые лебёдки, брашпили) при опрокидывании реверсируют под действием веса груза или якоря.(рис.8.11, б).

Переходный процесс при провале напряжения сначала протекает так же, как в предыду-

Представить себе опрокинутый фундамент частного дома достаточно сложно. Естественной причиной, по которой возможно опрокидывание небольшого дома, является ветер огромной силы, способный за счет парусности строения опрокинуть его набок. Например, как одиноко стоящую сосну, у которой нет фундамента, но вместо него есть корни.

Рис. 1. Варианты возможных поворотов и смещений фундамента: а — осадка с поворотом, б — осадка с поворотом и смещением, в — сдвиг по подошве.

Какой расчет необходим для основания дома?

Исходя из прямого назначения, которое состоит в равномерной передаче нагрузки сооружения на грунт, необходимо выполнить расчет ширины его опорной части и ее прочность.

Для этого необходимо определить вес сооружения, включая и собственный вес основания.

В расчет на прочность фундамента должны войти и снеговые нагрузки, передающиеся на него от кровли в зимнее время, и вес всего, что будет смонтировано и внесено внутрь помещения (отопительная система, водоснабжение, канализация, мебель и т. п.).

Ветровые нагрузки на невысокое здание в на прочность не включают. Эти нагрузки учитывают, когда выполняют расчет на прочность такого элемента кровли, как мауэрлат, с помощью которого через стены они передаются на основание дома.

На рис. 1 показаны варианты возможных поворотов и смещений фундамента: а) осадка с поворотом, б) осадка с поворотом и смещением, в) сдвиг по подошве.

Рис. 2. Неправильный расчет прочности фундамента может привести к опрокидыванию всего сооружения.

На мелкозаглубленное основание в зимний период действуют выталкивающие силы, возникающие в результате пучения грунта. Неравномерное распределение этих сил и может привести к потере устойчивости фундамента, показанное на изображении, особенно в том случае, если по каким-либо причинам на основание не было возведено строение. Чтобы в этом случае исключить потерю устойчивости, грунт необходимо защитить от промерзания.

Если произошла потеря устойчивости, когда строительство дома было закончено, следует искать ошибки при расчете требуемой прочности. Но это все же не должно было привести к опрокидыванию всего сооружения, как это показано на рис. 2. Изображен небольшой дом, опрокидывание которого произошло не потому, что не был выполнен соответствующий расчет фундамента. При определении размеров основания и его заглубления, не были учтены физические свойства грунта (на изображении видно, что это песчаный грунт).

Вернуться к оглавлению

Нужен ли расчет основания частного дома на устойчивость?

Фундамент, который под действием внешних сил не опрокинется, не сдвинется в горизонтальной плоскости вместе с грунтом, считают устойчивым. На устойчивость рассчитывают фундаменты таких ответственных элементов, как опоры мостов, заводских труб и т. п.

В отличие от заводских труб расчет фундамента частных домов на опрокидывание можно не выполнять. И причина в том, что эти дома имеют сравнительно небольшую высоту. Если у заводской трубы центр тяжести и равнодействующая силы ветра находятся на значительной высоте от фундамента, в результате чего может образоваться момент достаточный для нарушения устойчивости, то для низкого строения, расчет по этому фактору просто не нужен.

В частном секторе в настоящее время также появляются отдельные строения, которые требуют расчетов их оснований на такое воздействие. Например, ветровые генераторы. На рис. 3 представлен 1 из вариантов основания для такого генератора. Следует обратить внимание на глубину заложения основания. Она явно превышает глубину промерзания грунта. Остальные же размеры на изображении 3 могут служить только для ориентирования и могут отличаться от фактических размеров. Высота вышки — Н В, для надежной работы генератора, зависит от местности, но в среднем ее можно считать равной 20 м.

Вернуться к оглавлению

Определение опрокидывающего момента

Рис. 3. Схема основания ветрового генератора.

На рис. 4 приведена расчетная схема с указанием сил, действующих на фундамент. Основным фактором, создающим опрокидывание, является момент M U , а основным препятствием этому является сила F U . Именно эта составляющая препятствует потере устойчивости.

Равномерно распределенная нагрузка Р представляет собой реакцию грунта на действие силы F U . Сила Q r оказывает влияние на сдвиг в горизонтальной плоскости. При расчете на сдвиг большое значение имеет коэффициент трения кладки по грунту. Для расчета на опрокидывание эту силу не учитывают

Для определения опрокидывающего момента M U необходимо знать скорость ветра и площадь сооружения, на которую он воздействует (парусность). Чтобы обеспечить работу ветрового генератора, необходима минимальная скорость, равная примерно 6-8 м/с. Однако, необходимо учесть, что скорости ветра могут быть значительно больше, поэтому следует рассчитывать на максимально возможную в данном районе скорость. Например, при скорости ветра 10 м/с давление составляет 60 Н/м 2 , а при скорости 50 м/с это давление составит 1500 Н/м 2 . В таблице № 1 приведены значения, по которым, зная максимальные скорости ветра, можно определить его давление.

Таблица № 1.

Зная скорость ветра V и площадь лопастей S Л, по таблице 1 определяем соответствующее давление и по этой площади вычисляем силу Р Л, приложенную к краю вышки, то есть на расстоянии Н В от поверхности земли. С учетом глубины h, на которой расположена подошва основания, плечо составит:

Ветер будет действовать и на вышку по всей ее длине. Для определения площади, вначале определим среднее значение ширины вышки, L СР

Рис. 4. Схема сил, действующих на фундамент.

L СР = (L В +L Н)/2, где

L В -ширина вышки в верхней ее части;
L Н — ширина вышки у основания.

Определим площадь вышки, нормальную к направлению ветра:

S В = Н В × L СР,

и теперь определим общую нагрузку Р В как произведение площади S В на значение давления из таблицы 1. Эта сила будет приложена посредине высоты вышки.

Теперь можно определить опрокидывающий момент.

М U = Р Л ×H+ Р В ×(Н В /2+h)

Отыскание Мопр сводиться к определению такой горизонтали AF которая ограничивает площадь сегмента BCF, равную площади OAB. При этом определяеться и приельный динамический угол крена Ɵмах. Момент больше ОА, будет больше востонавливающего и судно опрокинеться.

23.Определение динамического опрокидывающего момента при прямом начальном положении по диаграмме Lд.

Для определения опрокидывающего момента нужно провести касательную к ДДО. Точка соприкосновения даст М опр как ординату касательной. При этом абсцисса точки касания определит наибольший динамический угол крена Ɵопр.

24. Определение опрокидывающего момента при качке судна по диаграмме lст

Остойчивость на больших углах крена . По мере увеличения крена судна восстанавливающий момент сначала возрастает, затем уменьшается, становится равным нулю и далее не только не препятствует наклонению, а наоборот, способствует ему (рис. 6).

Рис. 6. Диаграмма статической остойчивости.

Так как водоизмещение для данного состояния нагрузки постоянно, то восстанавливающий момент изменяется только вследствие изменения плеча поперечной остойчивости l ст . По расчетам поперечной остойчивости на больших углах крена строят диаграмму статической остойчивости , представляющую собой график, выражающий зависимость l ст от угла крена. Диаграмму статической остойчивости строят для наиболее характерных и опасных случаев нагрузки судна.

25. Определение опрокидывающего момента при качке судна по диаграмме ld

Из точки А проводится касательная АС к диаграмме динамической остойчивости, и от точки А на прямой, параллельной оси абсцисс, откладывается отрезок АВ, равный одному радиану. Из точки В восстанавливаем перпендикуляр ВЕ до пересечения с касательной АС в точке Е. Отрезок ВЕ равен плечу lопр опрокидывающего момента, если диаграмма

построена в масштабе плеч. Опрокидывающий момент

Mc = 9, 81 ·∆ · lопр, кН × м.

26. Связь диаграмм статической и динамической остойчивости

Диаграммы статической и динамической остойчивости

Обычно в судовых условиях строят диаграмму динамической остойчивости по известной диаграмме статической остойчивости, схема вычислений плеч динамической остойчивости приведена в табл:

Диаграмма динамической остойчивости

При построении диаграммы динамической остойчивости по результатам вышеприведенной таблицы динамический кренящий момент принимают постоянным по углам крена. Следовательно, его работа находится в линейной зависимости от угла θ, а график произведения f(θ) = 1кр*θ изобразится на диаграмме динамической остойчивости прямой наклонной линией, проходящей через начало координат. Для ее построения достаточно провести вертикаль через точку, отвечающую крену в 1 радиан и отложить на этой вертикали заданное плечо 1кр. Прямая, соединяющая таким образом точку Е с началом координат О представит искомый график f(θ) =1кр*θ , т. е. график работы кренящего момента, отнесенный к силе веса судна Р. Эта прямая пересечет диаграмму динамической остойчивости в точках А и В. Абсцисса точки А определяет угол динамического крена θ, при котором имеет равенство работ кренящего и восстанавливающего моментов.

Точка В практического значения не имеет.

При решении задач на опрокидывание рассматривается та предельное положение, в котором тело находится в состоянии неустойчивого равновесия, т. е. когда оно готово перейти из состояния покоя в движение. Всякое незначительное изменение элементов конструкции или сил, действующих на эту конструкцию, ведет к опрокидыванию (вращению) конструкции вокруг некоторой оси, называемой осью опрокидывания, перпендикулярной плоскости чертежа. Условием равновесия такого тела (конструкции) является равенство нулю суммы моментов относительно точки пересечения оси опрокидывания с плоскостью чертежа всех заданных (активных) сил, действующих на тело:

При составлении уравнения следует помнить, что реакции опор в это уравнение не входят, так как при предельном положении конструкция опирается только на те опоры, через которые проходит ось опрокидывания. Величины, которые при этом определяются из уравнения имеют критические (максимальные или минимальные) значения и для обеспечения запаса устойчивости должны быть при конструировании соответственно уменьшены (те, для которых найдено максимально возможное при равновесии значение) или увеличены (те, для которых найдено минимально возможное при равновесии значение).

Часть активных сил, действующих на тело, создает пары, которые стремятся опрокинуть тело. Сумма моментов таких сил, относительно оси опрокидывания называется моментом опрокидывания:

Другая часть активных сил создает пары, которые стремятся возвратить тело в первоначальное положение.

Сумма моментов таких сил относительно оси опрокидывания называется моментом устойчивости:

Отношение абсолютного значения момента устойчивости к абсолютному значению момента опрокидывания называется коэффициентом устойчивости:

Задача 15. Водонапорная башня состоит из цилиндрического резервуара высотой диаметром укрепленного на четырех симметрично расположенных столбах, наклонных к горизонту (рис. 48). Дно резервуара находится на высоте над уровнем опор; вес башни давление ветра рассчитывается на площадь проекции поверхности резервуара на плоскость, перпендикулярную к направлению ветра, причем удельное давление ветра принимается равным Определить необходимое расстояние между основаниями столбов.

Решение. 1. Рассматриваем равновесие водонапорной башни (рис. 49). Так как требуется определить критическое значение расстояния между основаниями столбов, а именно то считаем, что башня находится в состоянии неустойчивого равновесия, т. е. при малейшем уменьшении этого расстояния башня опрокинется под действием ветра, вращаясь вокруг шарнира А против направления движения часовой стрелки.

Следовательно, в положении неустойчивого равновесия нужно считать, что башня опорами В только касается земли, но не давит на землю,

2. Изображаем активные силы, действующие на башню. Сила вес башни и сила давление ветра на резервуар.

Расчет фундамента на устойчивость должен исключать возможность его опрокидывания, сдвига по основанию и сдвига совместно с грунтом по некоторой поверхности скольжения. Фундамент считают устойчивым, если выполняется условие (6.1), в котором под F понимают силовое воздействие, способствующее потере устойчивости (опрокидыванию или сдвигу) фундамента, а под Fu - сопротивление основания или фундамента, препятствующее потере устойчивости. Расчеты устойчивости выполняют по расчетным нагрузкам, полученным умножением нормативных нагрузок на коэффициенты надежности по нагрузке. Если для одной и той же нагрузки нормами предусмотрены два коэффициента надежности, то в расчете учитывают тот из них, при котором будет меньший запас устойчивости.


Рис. 7.7. Схема к расчету фундамента на устойчивость против опрокидывания

При расчете фундаментов опор мостов на устойчивость против опрокидывания все внешние силы, действующие на фундамент (включая его собственный вес), приводят к силам Fv, Qr и моменту Мu (рис. 7.7). Силы Fv и Qr равны проекциям всех внешних сил соответственно на вертикаль и горизонталь, а момент Ми равен моменту внешних сил относительно оси, проходящей через центр тяжести подошвы фундамента перпендикулярно расчетной плоскости. Момент Ми способствует опрокидыванию фундамента (повороту его вокруг оси О - см. рис. 7.7). Момент Mz, сопротивляющийся опрокидыванию, будет равен Fva, где а - расстояние от точки приложения силы Fv до грани фундамента, относительно которой происходит опрокидывание.

Устойчивость конструкций против опрокидывания следует рассчитывать по формуле
Ми≤(ус/уn)Мz, (7.5)
где Мu и Мz - моменты соответственно опрокидывающих и удерживающих сил относительно оси возможного поворота (опрокидывания) конструкции, проходящей по крайним точкам опирания, кН·м; ус - коэффициент условий работы, принимаемый при проверке конструкций, опирающихся на отдельные опоры, для стадии строительства равным 0,95; для стадии постоянной эксплуатации равным 1,0; при проверке сечений бетонных конструкций и фундаментов на скальных основаниях, равным 0,9; на нескальных основаниях - 0,8; уn - коэффициент надежности по назначению сооружения, принимаемый равным 1,1 при расчетах для стадии постоянной эксплуатации и 1,0 при расчетах для стадии строительства.

Опрокидывающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы.

Удерживающие силы следует принимать с коэффициентом надежности по нагрузке для постоянных нагрузок Уf<1, для временной вертикальной подвижной нагрузки от подвижного состава железных дорог, метрополитена и трамвая yf=1.

При расчете фундаментов опор мостов на устойчивость против сдвига по основанию сила Qr (см. рис. 7.7) стремится сдвинуть фундамент, а сила трения его о грунт Qz (по подошве фундамента) сопротивляется сдвигу. Сила Qz равна µFv> где µ - коэффициент трения фундамента по грунту.

В соответствии с требованиями СНиП 2.05.03-84 устойчивость конструкций против сдвига (скольжения) следует рассчитывать по формуле
Qr≤(yc/yn)Qz, (7.6)
где Qr - сдвигающая сила, кН, равная сумме проекций сдвигающих сил на направление возможного сдвига; ус - коэффициент условий работы, принимаемый равным 0,9; уn - коэффициент надежности по назначению сооружения, принимаемый как и в формуле (7.5); Qz - удерживающая сила, кН, равная сумме проекций удерживающих сил на направление возможного сдвига.

Сдвигающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы, а удерживающие силы - с коэффициентом надежности по нагрузке, указанным в экспликации к формуле (7.5).

В качестве удерживающей горизонтальной силы, создаваемой грунтом, допускается принимать силу, значение которой не превышает активного давления грунта.

Силы трения в основании следует определять по минимальным значениям коэффициентов трения подошвы фундамента по грунту.

При расчете фундаментов на сдвиг принимают следующие значения коэффициентов трения µ кладки по грунту.





Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top