Расчет опрокидывающего момента. Динамическая остойчивость судна

Расчет опрокидывающего момента. Динамическая остойчивость судна

Отыскание Мопр сводиться к определению такой горизонтали AF которая ограничивает площадь сегмента BCF, равную площади OAB. При этом определяеться и приельный динамический угол крена Ɵмах. Момент больше ОА, будет больше востонавливающего и судно опрокинеться.

23.Определение динамического опрокидывающего момента при прямом начальном положении по диаграмме Lд.

Для определения опрокидывающего момента нужно провести касательную к ДДО. Точка соприкосновения даст М опр как ординату касательной. При этом абсцисса точки касания определит наибольший динамический угол крена Ɵопр.

24. Определение опрокидывающего момента при качке судна по диаграмме lст

Остойчивость на больших углах крена . По мере увеличения крена судна восстанавливающий момент сначала возрастает, затем уменьшается, становится равным нулю и далее не только не препятствует наклонению, а наоборот, способствует ему (рис. 6).

Рис. 6. Диаграмма статической остойчивости.

Так как водоизмещение для данного состояния нагрузки постоянно, то восстанавливающий момент изменяется только вследствие изменения плеча поперечной остойчивости l ст . По расчетам поперечной остойчивости на больших углах крена строят диаграмму статической остойчивости , представляющую собой график, выражающий зависимость l ст от угла крена. Диаграмму статической остойчивости строят для наиболее характерных и опасных случаев нагрузки судна.

25. Определение опрокидывающего момента при качке судна по диаграмме ld

Из точки А проводится касательная АС к диаграмме динамической остойчивости, и от точки А на прямой, параллельной оси абсцисс, откладывается отрезок АВ, равный одному радиану. Из точки В восстанавливаем перпендикуляр ВЕ до пересечения с касательной АС в точке Е. Отрезок ВЕ равен плечу lопр опрокидывающего момента, если диаграмма

построена в масштабе плеч. Опрокидывающий момент

Mc = 9, 81 ·∆ · lопр, кН × м.

26. Связь диаграмм статической и динамической остойчивости

Диаграммы статической и динамической остойчивости

Обычно в судовых условиях строят диаграмму динамической остойчивости по известной диаграмме статической остойчивости, схема вычислений плеч динамической остойчивости приведена в табл:

Диаграмма динамической остойчивости

При построении диаграммы динамической остойчивости по результатам вышеприведенной таблицы динамический кренящий момент принимают постоянным по углам крена. Следовательно, его работа находится в линейной зависимости от угла θ, а график произведения f(θ) = 1кр*θ изобразится на диаграмме динамической остойчивости прямой наклонной линией, проходящей через начало координат. Для ее построения достаточно провести вертикаль через точку, отвечающую крену в 1 радиан и отложить на этой вертикали заданное плечо 1кр. Прямая, соединяющая таким образом точку Е с началом координат О представит искомый график f(θ) =1кр*θ , т. е. график работы кренящего момента, отнесенный к силе веса судна Р. Эта прямая пересечет диаграмму динамической остойчивости в точках А и В. Абсцисса точки А определяет угол динамического крена θ, при котором имеет равенство работ кренящего и восстанавливающего моментов.

Точка В практического значения не имеет.

Несмотря на большое разнообразие конструкций электродвигателей, совершенно ясно, что принцип их работы всегда один и тот же. Переменное электромагнитное поле, создаваемое статорной обмоткой или обмоткой возбуждения, вступает во взаимодействие с электрическим током, проходящим в цепи ротора или в якорной цепи.

Взаимодействие поля и тока формирует электромагнитный момент, который и приводит во вращение рабочий вал двигателя. Чтобы убедиться в общности принципов работы, достаточно взглянуть на рабочие участки механических характеристик асинхронного двигателя (АД) и двигателя постоянного тока (ДПТ) параллельного или независимого возбуждения.

Это совсем разные электрические машины, но сходство характеристик может показаться удивительным. Есть лишь несколько «но». Например, в характеристике АД имеется точка, соответствующая «моменту опрокидывания». Эта точка соответствует пределу нагрузочных способностей двигателя – больше этого момента он развить не может.

В то же время, характеристика ДПТ не имеет никаких критических точек. Скорость вращения его вала просто линейно уменьшается по мере увеличения нагрузки вплоть до полной остановки при «запредельном» значении момента сопротивления.

Кстати, именно для того, чтобы исключить работу ДПТ при таких больших нагрузках, для них часто формируется так называемая «экскаваторная» искусственная характеристика, предполагающая отсечку по току якоря.

Но почему же у АД отсечка по моменту фактически имеется уже в естественной характеристике? Почему наперекор общим принципам работы, в характеристике этого двигателя имеется такой странный провал?

Все дело в особенностях работы в цепи переменного тока. Ведь электромагнитный момент создается не просто при взаимодействии поля статора и тока ротора.

В процессе участвует не весь ток, а только его активная составляющая, то есть та, которая совпадает по фазе с ЭДС ротора. Реактивная же составляющая не создает никакого момента, попусту нагружая роторную цепь.

Интересно то, что взаимное соотношение величин этих составляющих непостоянно по мере пуска двигателя . Величина реактивной составляющей зависит от реактивного (индуктивного) сопротивления ротора. Чем больше индуктивное сопротивление, тем более реактивным является ток, тем больше сдвиг фаз между ним и ЭДС.

Соотношение, позволяющее определить индуктивное сопротивление, известно давно:

X=2πfL;

Параметр L (индуктивность цепи) здесь является неизменным. Иное дело – частота f . В роторной цепи она достигает максимальной величины в первый момент пуска, когда ротор неподвижен. Это 50 герц, частота сети.

При этом, поскольку частота максимальна, то и реактивная составляющая тока достигает своего максимума. При этом момент, конечно, не особенно велик по причинам, о которых мы говорили выше. Таким образом, получается, что при больших пусковых токах любой АД обеспечивает посредственный пусковой момент.

По мере разгона ротора частота тока в нем снижается из-за того, что снижается относительная скорость вращения электромагнитного поля. Снижается и реактивная составляющая тока ротора, а это приводит к тому, что при относительно малом токе двигатель может развить больший момент.

По достижении током частоты в несколько герц двигатель выходит на рабочую характеристику и достигает подсинхронной скорости вращения. Но при увеличении нагрузки до момента опрокидывания скорость снова снизится до такой степени, что реактивная составляющая тока ротора начнет преобладать.

Это приведет к тому, что при растущем токе момент двигателя уже не сможет повышаться и двигатель встанет в режиме короткого замыкания.

Наличие реактивной составляющей в токе роторной цепи – это причина главного отличия между характеристиками ДПТ параллельного возбуждения и АД.


а) на сдвиг

Равнодействующая нормативных вертикальных сил в уровне подошвы фундамента

ΣN II = 1463,56 кН (см.2.3)

Нормативная сдвигающая сила F h =22 кН

Расчётная удерживающая сила F h с = f · ΣN I или ΣS i ;

f0,3 - коэффициент трения грунта

Сумма расчётных усилий ΣN I =γ n ·ΣN II ; γ n =0,9.

ΣN I =0,9·1463,56=1317,2 кН;

F h с = 0,3·1317,2 = 395,2 кН

Расчётная сдвигающая сила F h = γ n · F h ; F h = 1,2 · 22=26,4 кН

Устойчивость обеспечивается, если F h F h с

F h = 26,4< F h с = 395,2кН

б) на опрокидывание

Опрокидывающий момент от нормативных нагрузок; от расчётных нагрузок

М о = М II + F h · h ф М о = γ n · М о ; γ n = 1,2 ;

М о = 90 +22·1,5=12 кНм М о = 1,2 · 123=147,6 кНм

Удерживающий момент от нормативных нагрузок

Муд = 0,5в · ΣN

Муд = 0,5·3· 1463,56.=2195,3 кНм

Удерживающий момент от расчётных нагрузок

Муд I = 0,5в · γ n ΣN II , γ n = 0,9

Муд I = 0,5·3 · 0,9·1463,56=1975,8 кНм;

Устойчивость опрокидыванию обеспечивается, если выполняется условие

М о < М уд I

М о = 147,6 < М уд I =1975,8 кНм

Устойчивость против опрокидывания обеспечена.

2.7. Расчёт на прочность конструкции фундамента

В связи с применением типовой конструкции фундамента необходимость в проверке прочности отпадает.

  1. Проектирование свайного фундамента.

    1. Выбор конструкций свай и ростверка.

Согласно схеме рис. на с.11 задания с колонны на фундамент передаются вертикальные, горизонтальные нагрузки и момент. Поэтому минимальное количество свай целесообразно принять 4 е. Тогда в каждой свае воздействие момента незначительно. Внешний момент воспринимается парой сил. (см. схему)

ΔN M =

3d с6d (d – размер поперечного сечения сваи). При задних нагрузках (см. 1.3) целесообразно принять с =3d, d= 0,35 м. (Минимальное сечение железобетонных сплошных свай 20×20см)

Тогда размеры ростверка в плане а р = в р = 3d + d +2×0,15м

а р = в р =3 · 0,35 + 0,35+2 · 0,15 = 1,7м

Для надёжной заделки свай в железобетонном ростверке в верхних концах свай оголяется арматура на участке длиной - 0,4м (см. схему). Откуда рекомендуемая высота ростверка h р = 0,6 ÷ 0,8 м

h р ≈ 0,6 ÷ 0,8 м

Типовые железобетонные сваи сечением 35×35см могут быть длиной от 8м (см. с. 10,11 ).

В отдельных случаях возможна их длина до 16м, в случае необходимости можно применять и более длинные сваи с большим поперечным сечением.

Принимаем в нашем случае ориентировочно свайный фундамент с размерами, показанными на схеме рис.3, где могут быть применимы заводские сваи длиной 8 ÷ 16 м.

Принимаем сваи длиной 9м. Объём железобетонного ростверка

V p = a p ×b · h p

V p = 1,7×1,7 × 0,6 =1,734м 3

Объём железобетонных свай

V св = 4 · 0,35 · 0,35 · 14 =6,86 м 3

Вес ростверка F vp = γ жб · V p

Вес свай F v с = γ жб · V св

γ жб 24 кН/ м 3 - удельный вес железобетона

F vp = 24 · 1,734 = 41,616кН

F v с = 24 · 6,86 = 164,64 кН

      Определение несущей способности сваи

а) по грунту

Нижние концы свай упираются не в cкальные, а рыхлые осадочные породы (см. с. 17 задание), поэтому сваи – висячие.

Несущую способность висящих свай F d определяем в соответствии со СНиП (cм. с. 14 )

F d = γ с (γ с R ·R·А +uΣγ с f · f i · h i)

Применим забивные сваи, тогда

γ с, γ с R , γ с f - коэффициенты надёжности могут быть равными 1.

R – расчётное сопротивление грунта под нижним концом сваи (см.с. 37).

f i – расчётное сопротивление грунта вследствие трения по боковой поверхности сваи (см. с.38).

А, u – площадь поперечного сечения сваи и его периметр.

А = d 2 ; u u = 4d

А = 0,35 × 0,35 = 0,1225м 2

u = 4 · 0,35 = 1,4 м.

Величины R и f i следует принимать по таблицам с.37, 38 для грунтов на определённой глубине.

Удобно разбить длину сваи на отрезки ℓ i 2м, как показано на схеме и там показать величины R и f i , которые потом подставить в расчётную формулу для подсчёта F d

Величина R для грунта 2 го слоя на уровне нижних концов свай.

Величины f i на уровне середины отрезков h i для грунтов на соответствующих глубинах z i

F d =1653·0,1225+1,4(1,9·30+2·38+1,4·30,4+1,4·32,1+1,3·33,225+1,0·33,55+1,0·34,48+1,0·35,28+1,0·36,08+1,0·36,88+1,0·37,68)=871,2 кН

Расчет фундамента на устойчивость должен исключать возможность его опрокидывания, сдвига по основанию и сдвига совместно с грунтом по некоторой поверхности скольжения. Фундамент считают устойчивым, если выполняется условие (6.1), в котором под F понимают силовое воздействие, способствующее потере устойчивости (опрокидыванию или сдвигу) фундамента, а под Fu - сопротивление основания или фундамента, препятствующее потере устойчивости. Расчеты устойчивости выполняют по расчетным нагрузкам, полученным умножением нормативных нагрузок на коэффициенты надежности по нагрузке. Если для одной и той же нагрузки нормами предусмотрены два коэффициента надежности, то в расчете учитывают тот из них, при котором будет меньший запас устойчивости.


Рис. 7.7. Схема к расчету фундамента на устойчивость против опрокидывания

При расчете фундаментов опор мостов на устойчивость против опрокидывания все внешние силы, действующие на фундамент (включая его собственный вес), приводят к силам Fv, Qr и моменту Мu (рис. 7.7). Силы Fv и Qr равны проекциям всех внешних сил соответственно на вертикаль и горизонталь, а момент Ми равен моменту внешних сил относительно оси, проходящей через центр тяжести подошвы фундамента перпендикулярно расчетной плоскости. Момент Ми способствует опрокидыванию фундамента (повороту его вокруг оси О - см. рис. 7.7). Момент Mz, сопротивляющийся опрокидыванию, будет равен Fva, где а - расстояние от точки приложения силы Fv до грани фундамента, относительно которой происходит опрокидывание.

Устойчивость конструкций против опрокидывания следует рассчитывать по формуле
Ми≤(ус/уn)Мz, (7.5)
где Мu и Мz - моменты соответственно опрокидывающих и удерживающих сил относительно оси возможного поворота (опрокидывания) конструкции, проходящей по крайним точкам опирания, кН·м; ус - коэффициент условий работы, принимаемый при проверке конструкций, опирающихся на отдельные опоры, для стадии строительства равным 0,95; для стадии постоянной эксплуатации равным 1,0; при проверке сечений бетонных конструкций и фундаментов на скальных основаниях, равным 0,9; на нескальных основаниях - 0,8; уn - коэффициент надежности по назначению сооружения, принимаемый равным 1,1 при расчетах для стадии постоянной эксплуатации и 1,0 при расчетах для стадии строительства.

Опрокидывающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы.

Удерживающие силы следует принимать с коэффициентом надежности по нагрузке для постоянных нагрузок Уf<1, для временной вертикальной подвижной нагрузки от подвижного состава железных дорог, метрополитена и трамвая yf=1.

При расчете фундаментов опор мостов на устойчивость против сдвига по основанию сила Qr (см. рис. 7.7) стремится сдвинуть фундамент, а сила трения его о грунт Qz (по подошве фундамента) сопротивляется сдвигу. Сила Qz равна µFv> где µ - коэффициент трения фундамента по грунту.

В соответствии с требованиями СНиП 2.05.03-84 устойчивость конструкций против сдвига (скольжения) следует рассчитывать по формуле
Qr≤(yc/yn)Qz, (7.6)
где Qr - сдвигающая сила, кН, равная сумме проекций сдвигающих сил на направление возможного сдвига; ус - коэффициент условий работы, принимаемый равным 0,9; уn - коэффициент надежности по назначению сооружения, принимаемый как и в формуле (7.5); Qz - удерживающая сила, кН, равная сумме проекций удерживающих сил на направление возможного сдвига.

Сдвигающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы, а удерживающие силы - с коэффициентом надежности по нагрузке, указанным в экспликации к формуле (7.5).

В качестве удерживающей горизонтальной силы, создаваемой грунтом, допускается принимать силу, значение которой не превышает активного давления грунта.

Силы трения в основании следует определять по минимальным значениям коэффициентов трения подошвы фундамента по грунту.

При расчете фундаментов на сдвиг принимают следующие значения коэффициентов трения µ кладки по грунту.


Предельный кренящий момент, превышение к-рого, согласно расчету, приводит к опрокидыванию судна. Для определения О. м. используют диаграммы остойчивости. О. м. при его статич. действии равен макс, ординате диаграммы статич. остойчивости, построенной в масштабе моментов. О. м. в случае динам, (внезапного) действия на судно, находящееся в прямом положении, определяют: 1) по диаграмме статич. остойчивости из условия равенства заштрихованных площадей; 2) по диаграмме динам, остойчивости, построенной в масштабе плеч, проведением касательной из нач. координат. Ордината касательной при абсциссе, равной 1 рад, показывает плечо /опр, к-рое при умножении на силу тяжести судна (равную произведению его объемного водоизмещения на удельный вес воды), определяет искомый момент.

«ОПРОКИДЫВАЮЩИЙ МОМЕНТ» в Интернете:

Морские анекдоты

Встречаются два моряка. Поговорили о всяком. Тут один говорит другому:
- Мы уже пол-часа разговариваем, а ты все время показываешь мне язык! В чем дело?
- Это я не язык тебе показываю, это у меня после праздников печень торчит.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top