Размножение клетки и ее жизненный цикл таблица. Жизненный цикл клетки, его этапы

Размножение клетки и ее жизненный цикл таблица. Жизненный цикл клетки, его этапы

Большинству клеток свойственен жизненный цикл.

Жизненный цикл – существование клетки от деления до следующего деления или гибели клетки. У одноклеточных организмов жизненный цикл совпадает с жизнью особи.

Жизненный цикл состоит из двух стадий - интерфаза и митоз.

В тканевых клетках он совпадает с митотическим циклом и состоит из четырех периодов: три периода (интерфаза) и собственно митоз:

Три первых периода составляют интерфазу:

1. Пресинтетический период (постмиотический) G 1:

· активный рост и функционирование клеток (синтез мРНК, белков, увеличивается количество рибосом и митохондрий);

· подготовка к синтезу ДНК.

2. Синтетический период (S):

· происходит репликация (редупликация) ДНК;

· удвоение материала хромосом;

· продолжается синтез мРНК и белков,

3. Постсинтетический период (премиотический) G 2:

· подготовка клеток к делению.

4. Митоз – редуплицированные хромосомы расходятся в дочерние клетки.

Рис. 5. Жизненный цикл клетки .

Продолжительность цикла и его периодов составляет 10-50 часов, в зависимости от типа клеток, их возраста и т.д. Наиболее вариабельны по времени периоды G 1 и G 2. .

Митоз

Митоз – непрямое деление, основной способ деления эукариотических клеток.

Биологический смысл:

· строго одинаковое распределение хромосом между дочерними клетками, что обеспечивает образование генетически равноценных клеток и сохраняет преемственность в ряду клеточных поколений;

· митотическое деление лежит в основе всех форм размножения у одно- и многоклеточных организмов;

· митотическое деление лежит в основе роста организмов.

Удвоение хромосом происходит в интерфазе. В митоз хромосомы вступают уже удвоенные.

Фазы митоза:

1. Профаза:

· конденсация (спирализация) парных хромосом (в результате они становятся видимыми). Каждая хромосома состоит из двух хроматид;

· начинается формирование веретена деления.

2. Прометафаза:

· разрушение ядерной оболочки;

· начинается движение хромосом, их центромеры вступают в контакт с микротрубочками веретена деления, полюса продолжают расходиться друг от друга;

· к концу фазы образуется веретено деления.

3. Метафаза:

· образуется метафазная пластинка, хромосомы располагаются на экваторе в одной плоскости.

4. Анафаза:

· соединение в районе центромеры разрушается и хромосомы делятся, хроматиды (половинки хромосом) расходятся к полюсам клетки с помощью нитей веретена деления.

5. Телофаза:

· разрушение веретена деления;

· образование ядерных оболочек вокруг двух групп хромосом

· деконденсация хромосом;

· образование дочерних ядер.



В результате образуется две дочерние клетки, идентичные материнской клетке.

Мейоз

Мейоз – способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом в два раза и переход клеток из диплоидного состояния в гаплоидное. Происходит после репликации ДНК. Восстановление плоидности происходит в результате полового процесса.

Биологический смысл:

· обеспечивает случайную, независимую рекомбинацию генов, происходит за счет кроссинговера – обмен участками гомологичных хромосом;

· поддержание постоянства кариотипа в ряду поколений;

· является важнейшим механизмом наследственности и изменчивости.

Мейоз не идентичен гаметогенезу. Гаметогенез - образование специализированных гамет из недифференцированных стволовых клеток.

В некоторых группах живых организмов (сосудистые растения, грибы) мейоз предшествует гаметогенезу, и, как правило, отделен от него значительным промежутком времени. У других групп организмов мейоз сопряжен с гаметогенезом, но полной идентичности этих процессов нет, так как сперматозоиды созревают по завершении мейоза, а ооциты до его завершения.

В зависимости от места в жизненном цикле организма, выделяют три основных типа мейоза:

1. Зиготный (многие грибы и водоросли). Происходит в зиготе, сразу после оплодотворения и приводит к образованию гаплоидного мицелия или таллома, а затем спор и гамет.

2. Гаметный (все многоклеточные животные и ряд низших растений). Происходит в половых органах и приводит к образованию гамет.

3. Споровый (высшие растения). Происходит перед цветением и приводит к образованию гаплоидного гаметофита, в котором позднее образуются гаметы.



Фазы мейоза.

Мейоз состоит из двух последовательных делений.

Деление первое:

1. Профаза 1 – сложная и растянутая во времени. Выделяют пять стадий:

· Лептотена – конденсация хромосом;

· Зиготена – коньюгация гомологичных хромосом с образованием структур, называемых бивалентами;

· Пахитена – кроссинговер (обмен участками гомологичных хромосом);

· Диплотена – частичная деконденсация хромосом, могут идти процессы транскрипции и трансляции;

· Диакинез – максимальная конденсация хромосом, прекращение процессов синтеза, разрушение ядерной оболочки, хромосомы соединены между собой.

2. Метафаза 1 – образование метафазной пластинки.

3. Анафаза 1 – биваленты делятся и хромосомы расходятся к полюсам (расходятся целые хромосомы, а не хроматиды, как в митозе).

4. Телофаза 1 – деспирализация хромосом и появление ядерной оболочки.

Второе деление следует за первым, S-фаза отсутствует, происходит без синтеза ДНК, и поэтому при втором делении количество ДНК уменьшается вдвое. Образуются клетки с гаплоидным набором хромосом.

1. Профаза 2 – конденсация хромосом, разрушение ядерной оболочки, образование веретена деления.

2. Метефаза 2 – образование метафазной пластинки. Хромосомы состоят из двух хроматид.

3. Анафаза 2 – хромосомы делятся и расходятся к полюсам.

4. Телофаза 2 – деспирализация хромосом, появление ядерной оболочки.

В результате из одной диплоидной клетки образуется четыре гаплоидных.

Два деления мейоза сопровождаются редукцией числа хромосом. При этом в одних бивалентах при первом делении расходятся гомологичные хромосомы, а в других – хроматиды. При втором делении, наоборот – в первых бивалентах расходятся хроматиды, а во вторых гомологичные хромосомы, поэтому неверно называть одно деление редукционным, а второе эквационным.

Вопросы для самоконтроля:

1. Какие способы деления клетки вы знаете?

2. Что такое хромосомный набор?

3. Из каких стадий состоит жизненный цикл клетки? Какие события происходят на каждой стадии?

4. Что такое митоз? В чем состоит биологический смысл митоза?

5. Какие типы мейоза вы знаете?

6. Что такое мейоз? В чем заключается биологический смысл мейоза?

Жизненный цикл клетки — период существования клетки от момента возникновения путем деления материнской клетки до собственного деления или гибели. Клетка в своей жизни проходит разные состояния: фазу роста и фазы подготовки к делению и деления. Процесс деления клетки предваряет интерфаза (стадия между делениями клетки; относительного покоя, когда происходят важнейшие события клеточной жизни: транскрипция, трансляция и репликация), которая состоит из трех этапов: пресинтетического (G1), синтетического (S), постсинтетического (G2). Она составляет 90% всего клеточного цикла. Стадия синтеза белков и роста (G1) начинается непосредственно после самого деления. Самый длинный период интерфазы, продолжительность которого в клетках от 10 часов до нескольких дней. Здесь происходит завершение формирования ядрышка; интенсивно синтезируется белок и РНК, увеличивается масса клетки. Клетка в этой стадии имеет диплоидный набор хромосом, каждая из которых содержит одну молекулу ДНК (2п2с). Накопив необходимые вещества и восстановив свой размер, а иногда и без изменения размеров после предыдущего деления, клетки начинают подготовку к следующему делению. Эта фаза называется фаза S — фаза синтеза ДНК и удвоения хромосом. Продолжительность S-периода от нескольких минут у бактерий до 6—12 часов в клетках млекопитающих. В этот период происходит главное событие интерфазы — репликация — удвоение ДНК. Каждая хромосома становится двухроматидной, а число хромосом не изменяется (2п4с). Параллельно идет синтез белков, которые участвуют в конденсации (упаковке) хромосом при их спирализации. Далее клетка переходит в фазу G2 — фазу подготовки к митозу, синтезируются белки, ферменты, необходимые для обеспечения деления клеток, начинается спирализация хромосом.
Митоз — деление клеточного ядра, в результате которого ядра дочерних клеток содержат то же число хромосом, что и родительские. Хромосомы переходят в компактную форму митотических хромосом, образуется веретено деления, участвующее в переносе хромосом при расхождении хромосом к противоположным полюсам клетки и делении тела клетки (цитокинез). Биологическое значение митоза: равное количество хромосом у дочерних и материнской клеток; гены их содержат совершенно идентичную наследственную информацию, при этом происходит точная передача наследственной информации от родителей к потомкам. Митоз обеспечивает регенерацию утраченных частей и замещение клеток у многоклеточных организмов, основа вегетативного размножения. Длительность митоза сильно варьирует у разных организмов и тканей. Наиболее часто встречается клеточный цикл в течение 18—20 ч. Клетки эпителия двенадцатиперстной кишки делятся каждые 11 часов, тощей — 19 часов, роговицы глаза — через 3 суток. Длительность стадий зависит от типа тканей, состояния организма, внешних факторов. Наиболее продолжительны первая и последняя стадии.
Стадии митоза. Первая стадия митоза — профаза, за ней следуют метафаза, анафаза и телофаза, завершающиеся делением клетки — цитокинезом.
В профазе происходит исчезновение ядрышка, спирализация хромосом фрагментация ядерной мембраны. Формируется веретено деления при участии центриолей, от которого отходят нити веретена деления. В хромосомах центромеры образуют особые структуры — кинетохоры, которые обеспечивают связывание хромосомы с нитями веретена. Они прикрепляются к специальной группе кинетохорных нитей. В результате возникают две противоположно направленные силы, которые и приводят хромосому в экваториальную плоскость. Беспорядочные движения хромосом и их случайная окончательная ориентация обеспечивает случайное распределение хроматид между дочерними клетками, столь важное при мейозе.
Метафаза (2п4с). Хромосомы располагаются в одной плоскости (метафазная пластинка). За ориентацию хромосом перпендикулярно оси митотического веретена и расположение их на равном расстоянии от его полюсов ответственны кинетохорные нити (идут к противоположным полюсам веретена). Метафаза оканчивается разделением двух кинетохоров каждой хромосомы.
В анафазу (4п4с) (длительность фазы — несколько минут) хромосомы расщепляются (сестринские хроматиды разделяются в точке их соединения в центромере), начинается перемещение каждой хроматиды к соответствующим полюсам веретена за счет укорочения кинетохорных нитей. Параллельно удлиняются нити митотического веретена и два полюса веретена расходятся еще дальше. Хроматиды превращаются в две обособленные, самостоятельные дочерние хромосомы.
Телофаза (2п2с) начинается с остановки разошедшихся диплоидных наборов хромосом (ранняя телофаза) и кончается началом реконструкции нового интерфазного ядра (поздняя телофаза) и разделением исходной клетки на две дочерние (цитокинез). В ранней телофазе хромосомы начинают деконденсироваться и увеличиваться в объеме, веретено деления исчезает. В местах их контактов с мембранными пузырьками цитоплазмы образуется новая ядерная оболочка. После замыкания ядерной оболочки начинается формирование новых ядрышек. Процесс деления цитоплазмы — цитокинез, проходит под действием сократимого кольца, состоящего из актиновых филаментов.
Практически у всех эукариотических организмов обнаружено так называемое прямое деление ядер или амитоз. При амитозе не происходит конденсация хромосом и не образуется веретено деления, а ядро делится перетяжкой или фрагментацией, оставаясь в интерфазном состоянии. Генетический материал при этом распределяется между дочерними ядрами случайным образом. После амитоза клетки не способны приступить к митотическому делению и обычно вскоре погибают. Амитоз характерен для клеток, заканчивающих свое развитие: отмирающих эпителиальных клеток, фолликулярных клеток яичников и т.д. Встречается амитоз при патологических процессах: воспалении, злокачественном росте и др.

Жизненный цикл клетки включает начало ее образования и конец существования в качестве самостоятельной единицы. Начнем с того, что клетка появляется в ходе деления ее материнской клетки, а заканчивает свое существование по причине следующего деления либо гибели.

Жизненный цикл клетки состоит из интерфазы и митоза. Именно в этом рассматриваемый период равнозначен клеточному.

Жизненный цикл клетки: интерфаза

Это период между двумя митотическими клеточными делениями. Воспроизведение хромосом протекает сходно с редупликацией (полуконсервативной репликацией) молекул ДНК. В интерфазе ядро клетки окружено особой двухмембранной оболочкой, а хромосомы раскручены, и при обычном световом микроскопировании незаметны.

При окрашивании и фиксации клеток происходит скопление сильно окрашенного вещества - хроматина. Стоит отметить, что цитоплазма содержит все требуемые органоиды. Это обеспечивает полноценное существование клетки.

В жизненном цикле клетки интерфаза сопровождается тремя периодами. Рассмотрим каждый из них поподробнее.

Периоды жизненного цикла клетки (интерфазы)

Первый из них называется пересинтетическим . Результат предшествующего митоза - рост числа клеток. Здесь протекает транскрипция новоиспеченных молекул РНК (информационной), а также систематизируются молекулы остальных РНК, в ядре и цитоплазме синтезируются белки. Некоторые вещества цитоплазмы постепенно расщепляются с формированием АТФ, ее молекулы наделены макроэргическими связями, они переносят энергию туда, где ее недостаточно. При этом клетка увеличивается, по размерам она достигает материнской. Данный период длится долго у специализированных клеток, на его протяжении они осуществляют свои особые функции.

Второй период известен как синтетический (синтез ДНК). Его блокада может привести к остановке всего цикла. Здесь протекает репликация молекул ДНК, а также синтез белков, которые участвуют в формировании хромосом.

ДНК-молекулы начинают связываться с белковыми, в результате чего хромосомы утолщаются. Одновременно с этим наблюдается репродукция центриолей, в итоге их появляется 2 пары. Новая центриоль во всех парах размещается относительно старой под углом в 90°. Впоследствии каждая пара в период следующего митоза отодвигается к клеточным полюсам.

Синтетический период характеризуется как повышенным ДНК-синтезом, так и резким скачком формирования молекул РНК, а также белков в клетки.

Третий период - постсинтетический . Он характеризуется наличием подготовки клетки к последующему делению (митотическому). Длится данный период, как правило, всегда меньше других. Иногда он вообще выпадает.

Продолжительность генерационного времени

Иначе говоря, это то, сколько длится жизненный цикл клетки. Продолжительность генерационного времени, а также отдельно взятых периодов принимает разные значения у различных клеток. Это можно увидеть из таблицы ниже.

Период

Генерационное время

Тип популяции клетки

пресинтетический период интерфазы

синтетический период интерфазы

постсинтетический период интерфазы

митоз

кожный эпителий

двенадцати-перстной кишки

тонкой кишки

клетки печени 3-недельного животного

Итак, самый короткий жизненный цикл клетки - у камбиальных. Бывает, что совсем выпадает третий период - постсинтетический. К примеру, у 3-недельной крысы в клетках ее печени он уменьшается до получаса, продолжительность генерационного времени при этом составляет 21,5 ч. Длительность же синтетического периода - самая стабильная.

В остальных ситуациях в первом периоде (пресинтетическом) клетка накапливает свойства для осуществления специфических функций, это связано с тем, что ее строение становится более сложным. В случае если специализация слишком далеко не зашла, она может пройти полный жизненный цикл клетки с образованием 2-х новых в митозе клеток. В этой ситуации первый период может существенно увеличиться. К примеру, в клетках кожного эпителия мыши генерационное время, а именно 585,6 часов, приходится на первый период - пресинтетический, а в клетках периоста детеныша крысы - 102 часа из 114.

Главная часть данного времени именуется G0-периодом - это осуществление интенсивной специфической функции клетки. Многие клетки печени пребывают в таком периоде, ввиду чего они потеряли свою способность к митозу.

В случае если будет удалена часть печени, большинство ее клеток перейдут к полному проживанию сначала синтетического, затем постсинтетического периода, в конце - митотического процесса. Итак, для разного рода клеточных популяций уже доказана обратимость такого G0-периода. В остальных ситуациях степень специализации так сильно увеличивается, что при типичных условиях клетки не могут уже делиться митотически. Изредка в них протекает эндорепродукция. В некоторых она повторяется не один раз, хромосомы утолщаются настолько, что их можно увидеть в обычный световой микроскоп.

Таким образом, мы узнали, что в жизненном цикле клетки интерфаза сопровождается тремя периодами: пресинтетическим, синтетическим и постсинтетическим.

Деление клеток

Оно лежит в основе размножения, регенерации, передачи наследственной информации, развития. Сама по себе клетка существует лишь в промежуточном периоде между делениями.

Жизненный цикл (деление клетки) - период существования рассматриваемой единицы (начинается с момента ее появления посредством деления клетки материнской), в том числе и само деление. Заканчивается собственным делением либо гибелью.

Фазы клеточного цикла

Их всего шесть. Известны следующие фазы жизненного цикла клетки:


Длительность жизненного цикла, а также число фаз в нем у каждой клетки свое. Так, в нервной ткани клетки по завершении начального эмбрионального периода прекращают делиться, затем только функционируют в течение всей жизни самого организма, а впоследствии погибают. А вот клетки зародыша в стадии дробления сначала завершают 1 деление, а затем сразу, минуя остальные фазы, приступают к следующему.

Способы деления клетки

Из всего два:

  1. Митоз - это непрямое деление клеток.
  2. Мейоз - это характерное для такой фазы, как созревание половых клеток, деление.

Теперь подробнее узнаем, что представляет собой жизненный цикл клетки - митоз.

Непрямое деление клеток

Митоз представляет собой непрямое деление именно соматических клеток. Это непрерывный процесс, результат которого - сначала удвоение, затем одинаковое распределение между дочерними клетками наследственного материала.

Биологическое значение непрямого деления клеток

Оно заключается в следующем:

1. Результат митоза - образование двух клеток, каждая содержит такое же количество хромосом, как и материнская. Их хромосомы образуются посредством точной репликации материнского ДНК, ввиду чего гены дочерних клеток включают идентичную наследственную информацию. Они генетически одинаковые с родительской клеткой. Итак, можно сказать, что митоз обеспечивает идентичность передачи наследственной информации дочерним клеткам от материнской.

2. Итогом митозов является определенное количество клеток в соответствующем организме - это один из важнейших механизмов роста.

3. Большое число животных, растений размножается именно бесполым путем посредством митотического клеточного деления, поэтому митоз составляет основу вегетативного размножения.

4. Именно митоз обеспечивает полную регенерацию потерянных частей, а также замещение клеток, которое протекает в определенной степени у любых многоклеточных организмов.

Таким образом, стало известно, что жизненный цикл соматической клетки состоит из митоза и интерфазы.

Механизм митоза

Деление цитоплазмы и ядра - 2 самостоятельных процесса, которые протекают непрерывно, последовательно. Но в целях удобства изучения происходящих в период деления событий он искусственно разграничивается на 4 стадии: про-, мета-, ана-, телофазу. Их продолжительность различна в зависимости от типа ткани, внешних факторов, физиологического состояния. Самыми продолжительными выступают первая и последняя.

Профаза

Здесь наблюдается заметное увеличение ядра. В итоге спирализации происходит уплотнение, укорачивание хромосом. В более поздней профазе уже хорошо видна структура хромосом: 2 хроматиды, которые соединены центромерой. Начинается передвижение хромосом к экватору клетки.

Из цитоплазменного материала в профазе (поздней) образовывается веретено деления, которое формируется при участии центриолей (в животных клетках, у ряда низших растений) или без них (клетки некоторых простейших, высших растений). Впоследствии от центриолей начинают появляться 2-типовые нити веретена, точнее:

  • опорные, которые соединяют клеточные полюса;
  • хромосомные (тянущие), которые перекрещиваются в метафазе к хромосомным центромерам.

В завершении данной фазы исчезает ядерная оболочка, а хромосомы располагаются свободно в цитоплазме. Обычно ядро пропадает немного раньше.

Метафаза

Ее начало - исчезновение ядерной оболочки. Хромосомы сперва выстраиваются в экваторной плоскости, образуя метафазную пластинку. При этом хромосомные центромеры строго располагаются в экваторной плоскости. Нити веретена присоединяются к хромосомным центромерам, а некоторые из них проходят от одного полюса к другому, не прикрепляясь.

Анафаза

Ее началом считается деление центромер хромосом. В итоге хроматиды трансформируются в две обособленные дочерние хромосомы. Далее последние начинают расходится к клеточным полюсам. Они, как правило, в это время принимают особую V-образную форму. Такое расхождение осуществляется посредством ускорения нитей веретена. В то же время протекает удлинение опорных нитей, итогом чего становится отдаление полюсов друг от друга.

Телофаза

Здесь хромосомы собираются на клеточных полюсах, затем диспирализуются. Далее происходит разрушение веретена деления. Вокруг хромосом образуется ядерная оболочка дочерних клеток. Так завершается кариокинез, впоследствии осуществляется цитокинез.

Механизмы попадания вируса в клетку

Их всего два:

1. При помощи слияния вирусного суперкапсида и мембраны клетки. В результате этого высвобождается нуклеокапсид в цитоплазму. Впоследствии наблюдается реализация свойств генома вируса.

2. Посредством пиноцитоза (рецепторопосредованного эндоцитоза). Здесь происходит связывание вируса в месте окаймленной ямки с рецепторами (специфическими). Последняя впячивается внутрь клетки, а затем трансформируется в так называемый окаймленный пузырек. Он, в свою очередь, содержит поглощенный вирион, сливается с временным промежуточным пузырьком, который называется эндосомой.

Внутриклеточное размножение вируса

После проникновения в клетку геном вируса целиком подчиняет ее жизнь собственным интересам. Посредством белоксинтезирующей системы клетки и ее систем генераций энергии он воплощает собственное воспроизводство, жертвуя, как правило, жизнью клетки.

На рисунке ниже представлен жизненный цикл вируса в клетке хозяина (леса Семлики - представитель рода Alphvirus). Его геном представлен однонитевой позитивной нефрагментированной РНК. Там вирион оснащен суперкапсидом, который состоит из липидного бислоя. Посредством него проходит порядка 240 копий ряда гликопротеиновых комплексов. Вирусный жизненный цикл начинается с абсорбции его на мембране хозяйской клетки, там он соединяется с рецептором белка. Проникновение в клетку осуществляется посредством пиноцитоза.

Заключение

В статье был рассмотрен жизненный цикл клетки, описаны его фазы. Подробно рассказано о каждом периоде интерфазы.

Жизненный цикл клетки , или клеточный цикл , – это промежуток времени, в течение которого существует как единица, т. е. период жизни клетки. Он длится от момента появления клетки в результате деления ее материнской и до конца деления ее самой, когда она «распадается» на две дочерние.

Бывают случаи, когда клетка не делится. Тогда ее жизненный цикл - это период от появления клетки до гибели. Обычно не делятся клетки ряда тканей многоклеточных организмов. Например, нервные клетки и эритроциты.

Принято в жизненном цикле клеток эукариот выделять ряд определенных периодов, или фаз. Они характерны для всех делящихся клеток. Фазы обозначают G 1 , S, G 2 , M. Из фазы G 1 клетка может уходить в фазу G 0 , оставаясь в которой, она не делится и во многих случаях дифференцируется. При этом некоторые клетки могут возвращаться из G 0 в G 1 и пройти по всем этапам клеточного цикла.

Буквы в аббревиатурах фаз – это первые буквы английских слов: gap (промежуток), synthesis (синтез), mitosis (митоз).

Красным флуоресцентным индикатором клетки подсвечиваются в фазу G1. Остальные фазы клеточного цикла - зеленым.

Период G 1 – пресинтетический – начинается сразу как только клетка появилась. В этот момент она меньше по размеру, чем материнская, в ней мало веществ, недостаточно количество органоидов. Поэтому в G 1 происходит рост клетки, синтез РНК, белков, построение органелл. Обычно G 1 – самая длительная фаза жизненного цикла клетки.

S – синтетический период . Самый главный его отличительный признак – удвоение ДНК путем репликации . Каждая хромосома становится состоящей из двух хроматид. В этот период хромосомы по-прежнему деспирализованы. В хромосомах, кроме ДНК, много белков-гистонов. Поэтому в S-фазу гистоны синтезируются в большом количестве.

В постсинтетический период – G 2 – клетка готовится к делению, обычно путем митоза. Клетка продолжает расти, активно идет синтез АТФ, могут удваиваться центриоли.

Далее клетка вступает в фазу клеточного деления – M . Здесь происходит деление клеточного ядра – кариокинез , после чего деление цитоплазмы – цитокинез . Завершение цитокинеза знаменует завершение жизненного цикла данной клетки и начало клеточных циклов двух новых.

Фаза G 0 иногда называют периодом «отдыха» клетки. Клетка «выходит» из обычного цикла. В этот период клетка может приступить к дифференциации и уже никогда не вернуться к обычному циклу. Также в фазу G 0 могут входить стареющие клетки.

Переход в каждую последующую фазу цикла контролируется специальными клеточными механизмами, так называемыми чекпоинтами – контрольными точками . Чтобы наступила следующая фаза, в клетке должно быть все готово для этого, в ДНК не содержаться грубых ошибок и др.

Фазы G 0 , G 1 , S, G 2 вместе формируют интерфазу - I .

Рождение . Отправным моментом жизни любой клетки (кроме половой, для которой характерен мейоз) считают деление материнской клетки с образованием двух идентичных дочерних – митоз (непрямое деление СЛАЙД 18 (от греческого mitos – нить). Во время митоза основная задача материнской клетки – поровну передать равноценный в количественном и качественном отношении генетический материал дочерним клеткам.

При митозе полностью сохраняется объем и качество исходной наследственной информации. Успех митоза не зависит от числа хромосом в клетках. Поэтому именно митоз является основой индивидуального развития многоклеточных организмов. Кроме того, митоз является цитологической основой вегетативного размножения у грибов и растений и бесполого размножения у животных. В этом заключается биологическое значение митоза .

Интервал между завершением митоза в исходной клетке и завершением митоза в ее дочерней клетке называется клеточный цикл . Полный клеточный цикл включает интерфазу и собственно митоз . В свою очередь, собственно митоз включает кариокинез (деление ядра) и цитокинез (деление цитоплазмы).

Интерфаза – это период между двумя клеточными делениями. В интерфазе ядро компактное, не имеет выраженной структуры, хорошо видны ядрышки; хромосомы в большинстве случаев не видны. Интерфаза включает три стадии: пресинтетическую (обозначается символом G 1 – «джи-один»), синтетическую (S – «эс») и постсинтетическую (G 2 – «джи-два»).

На пресинтетической стадии в основе каждой хромосомы лежит одна двуспиральная молекула ДНК. Количество ДНК в диплоидной клетке на этой стадии обозначается символом . Клетка активно растет.

На синтетической стадии происходит репликация ДНК. Параллельно удваиваются центриоли (если они имеются).

В конце интерфазы процессы синтеза прекращаются. Далее начинается кариокинез , который включает ряд фаз: профазу , метафазу , анафазу и телофазу .

Профаза первая фаза митоза. Хромосомы спирализуются и становятся видны в световой микроскоп в виде тонких нитей. В конце профазы ядрышки исчезают, ядерная оболочка разрушается, и хромосомы выходят в цитоплазму.

Метафаза . Формируется митотический аппарат , в состав которого входит веретено деления (ахроматиновое веретено) и центриоли или иные центры организации микротрубочек. Хромосомы располагаются в экваториальной плоскости клетки, образуя метафазную пластинку .

В метафазе хромосомы максимально спирализованы. Каждая хромосома состоит из двух продольных субъединиц – хроматид . Обе хроматиды совершенно идентичны. В основе каждой хроматиды лежит одна молекула ДНК. Конечные участки хроматид называются теломеры . Хроматиды связаны между собой в области первичной перетяжки, которая называется центромера .


Анафаза . Происходит разделение хромосом на хроматиды. С этого момента каждая хроматида становится самостоятельной однохроматидной хромосомой, в основе которой лежит одна молекула ДНК. Однохроматидные хромосомы в составе анафазных групп расходятся к полюсам клетки.

Телофаза . Веретено деления разрушается. Хромосомы у полюсов клетки деспирализуются, вокруг них формируются ядерные оболочки. В клетке образуются два ядра, генетически идентичные исходному ядру. Содержание ДНК в дочерних ядрах становится равным 2c .

Телофаза (окончание кариокинеза) сопровождается цитокинезом . В цитокинезе происходит разделение цитоплазмы и формирование мембран дочерних клеток. У животных цитокинез происходит путем перешнуровывания клетки. У растений цитокинез происходит иначе: в экваториальной плоскости образуются пузырьки, которые сливаются с образованием двух параллельных мембран. На этом митоз завершается, и наступает очередная интерфаза.

Таким образом, в ходе митоза образуется две клетки с идентичными хромосомными наборами .

Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон » – меньше – и от «мейозис » – уменьшение).

Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n ). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n ).

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II . В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным . Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n ) содержание ДНК составляет 4с . При наличии центриолей происходит их удвоение. Таким образом в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное , илимейоз I )(СЛАЙД 20)

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты . Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов . Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады , так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра.В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления) . Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки.Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления) . Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления) . Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с .

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом .

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное , илимейоз II )

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления) . Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления) . Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления) . Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления) . Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с .

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

Типы мейоза . При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом . При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением . Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения .

Отличие мейоза от митоза . Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Созревание . В этот период происходит дифференцировка клеток и становление ключевых ферментных систем . Клетка готовится выполнять предназначенные природой функции, постепенно активизируя свой обмен веществ.

Активное функционирование . Интенсивность реакций метаболизма и сопряженного с ним энергетического обмена в это время максимальны.

В период активного функционирования интенсивность обмена веществ в клетке максимальна

Процессы в клетке направлены на обеспечение постоянства внутренней среды и выполнение специфических функций: нейрон воспринимает и передает нервный импульс, эритроцит переносит кислород и так далее.

Угасание (старение) . Этот процесс запрограммирован генетически и, в первую очередь, проявляется уменьшением выработки и активности ферментов в клетке. При этом замедляются биохимические реакции, тормозится метаболизм и энергетический обмен. Период старения клетки характеризуется уменьшением выработки и активности ферментов.

Стареющие клетки, как правило, имеют неудвоенное количество ДНК, но сохраняют жизнеспособность и некоторую метаболическую активность в течение определенного времени.

Естественная гибель клетки (апоптоз ). К сожалению, до сих пор процесс естественной гибели клеток до конца не изучен.

Известно, что в клетке из-за блокирования ферментов прекращается синтез белка, а нет белка – нет и жизни. Морфологически апоптоз характеризуется разрушением ядра и цитоплазмы. “Осколки” погибшей клетки поглощаются и перерабатываются специальными клетками иммунной системы – фагоцитами . Но ведь клетки могут погибнуть и под воздействием случайных факторов (механических, химических и любых других). Случайная гибель клеток (а также ткани, органа) в биологии называется некрозом . Важно то, что естественная клеточная гибель (апоптоз) в отличие от некроза не вызывает воспаления в окружающих тканях.

Апоптоз не вызывает воспаления в окружающих тканях

В организме запрограммированная клеточная гибель выполняет функцию, противоположную митозу, и, тем самым, регулирует общее число клеток в организме. Апоптоз играет важную роль в защите организма при вирусных инфекциях. В частности, иммунодефицит при ВИЧ-инфекции определяется нарушениями в контроле апоптоза.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top