Сложные интегралы. Примеры интегрирования по частям

Сложные интегралы. Примеры интегрирования по частям

Формула интегрирования по частям имеет вид:
.

Метод интегрирования по частям состоит в применении этой формулы. При практическом применении стоит отметить, что u и v являются функциями от переменной интегрирования. Пусть переменная интегрирования обозначена как x (символ после знака дифференциала d в конце записи интеграла) . Тогда u и v являются функциями от x : u(x) и v(x) .
Тогда
, .
И формула интегрирования по частям принимает вид:
.

То есть подынтегральная функция должна состоять из произведения двух функций:
,
одну из которых обозначаем как u: g(x) = u , а у другой должен вычисляться интеграл (точнее находиться первообразная):
, тогда dv = f(x) dx .

В некоторых случаях f(x) = 1 . То есть в интеграле
,
можно положить g(x) = u, x = v .

Резюме

Итак, в данном методе, формулу интегрирования по частям стоит запомнить и применять в двух видах:
;
.

Интегралы, вычисляющиеся интегрированием по частям

Интегралы, содержащие логарифм и обратные тригонометрические (гиперболические) функции

По частям часто интегрируются интегралы, содержащие логарифм и обратные тригонометрические или гиперболические функции. При этом ту часть, которая содержит логарифм или обратные тригонометрические (гиперболические) функции обозначают через u , оставшуюся часть - через dv .

Вот примеры таких интегралов, которые вычисляются методом интегрирования по частям:
, , , , , , .

Интегралы, содержащие произведение многочлена и sin x, cos x или e x

По формуле интегрирования частям находятся интегралы вида:
, , ,
где P(x) – многочлен от x . При интегрировании, многочлен P(x) обозначают через u , а e ax dx , cos ax dx или sin ax dx - через dv .

Вот примеры таких интегралов:
, , .

Примеры вычисления интегралов методом интегрирования по частям

Примеры интегралов, содержащих логарифм и обратные тригонометрические функции

Пример

Вычислить интеграл:

Подробное решение

Здесь подынтегральное выражение содержит логарифм. Делаем подстановки
u = ln x ,
dv = x 2 dx .
Тогда
,
.

Вычисляем оставшийся интеграл:
.
Тогда
.
В конце вычислений нужно обязательно добавить постоянную C , поскольку неопределенный интеграл - это множество всех первообразных. Также ее можно было добавлять и в промежуточных вычислениях, но это лишь загромождало бы выкладки.

Более короткое решение

Можно представить решение и в более коротком варианте. Для этого не нужно делать подстановки с u и v , а можно сгруппировать сомножители и применить формулу интегрирования по частям во втором виде.

.
Ответ

Примеры интегралов, содержащих произведение многочлена и sin x, cos x или ex

Пример

Вычислить интеграл:
.

Решение

Введем экспоненту под знак дифференциала:
e - x dx = - e - x d(-x) = - d(e - x) .

Интегрируем по частям.
.
Также применяем метод интегрирования по частям.
.
.
.
Окончательно имеем.

Метод интегрирования по частям применяется, в основном, когда подынтегральная функция состоит из произведения двух сомножителей определенного вида. Формула интегрирования по частям имеет вид:

Она дает возможность свести вычисление заданного интеграла
к вычислению интеграла
, который оказывается более простым, чем данный.

Большую часть интегралов, вычисляемых методом интегрирования по частям, можно разбить на три группы:

1. Интегралы вида
,
,
, где
– многочлен,
– число, не равное нулю

В этом случае через обозначают многочлен

.

2. Интегралы вида
,
,
,
,
, где
– многочлен.

В этом случае через
обозначают
, а всю остальную часть подынтегрального выражения через:

3. Интегралы вида
,
, где
– числа.

В этом случае через обозначают
и применяют формулу интегрирования по частям дважды, возвращаясь в результате к исходному интегралу, после чего исходный интеграл выражается из равенства.

Замечание : В некоторых случаях для нахождения заданного интеграла формулу интегрирования по частям необходимо применять несколько раз. Также метод интегрирования по частям комбинируют с другими методами.

Пример 26.

Найти интегралы методом по частям: а)
; б)
.

Решение.

б)

3.1.4. Интегрирование дробно-рациональных функций

Дробно-рациональной функцией (рациональной дробью) называется функция, равная отношению двух многочленов:
, где
– многочлен степени
,
– многочлен степени .

Рациональная дробь называется правильной , если степень многочлена в числителе меньше степени многочлена в знаменателе, т.е.
, в противном случае (если
) рациональная дробь называется неправильной .

Любую неправильную рациональную дробь можно представить в виде суммы многочлена
и правильной рациональной дроби, разделив числитель на знаменатель по правилу деления многочленов:

,

где
– целая часть от деления,– правильная рациональная дробь,
– остаток от деления.

Правильные рациональные дроби вида:

I. ;

II.
;

III.
;

IV.
,

где ,,
,
,,,
– действительные числа и
(т.е. квадратный трехчлен в знаменателеIII и IV дробей не имеет корней – дискриминант отрицательный) называются простейшими рациональными дробями I, II, III и IV типов .

Интегрирование простейших дробей

Интегралы от простейших дробей четырех типов вычисляются следующим образом.

I)
.

II) ,
.

III) Для интегрирования простейшей дроби III типа в знаменателе выделяют полный квадрат, производят замену
. Интеграл после подстановки разбивают на два интеграла. Первый интеграл вычисляют выделением в числителе производной знаменателя, что дает табличный интеграл, а второй интеграл преобразовывают к виду
, так как
, что также дает табличный интеграл.

;

IV) Для интегрирования простейшей дроби IV типа в знаменателе выделяют полный квадрат, производят замену
. Интеграл после подстановки разбивают на два интеграла. Первый интеграл вычисляют подстановкой
, а второй с помощью рекуррентных соотношений.

Пример 27.

Найти интегралы от простейших дробей:

а)
; б)
; в)
.

Решение.

а)
.

Всякую правильную рациональную дробь, знаменатель которой может быть разложен на множители, можно представить в виде суммы простейших дробей. Разложение на сумму простейших дробей осуществляют методом неопределенных коэффициентов. Он заключается в следующем:


соответствует одна дробь вида;

– каждому множителю знаменателя
соответствует сумма дробей вида


соответствует дробь вида
;

– каждому квадратному множителю знаменателя
соответствует суммадробей вида

где – неопределенные коэффициенты.

Для нахождения неопределенных коэффициентов правую часть в виде суммы простейших дробей приводят к общему знаменателю и преобразовывают. В результате получается дробь с тем же знаменателем, что и в левой части равенства. Затем отбрасывают знаменатели и приравнивают числители. В результате получается тождественное равенство, в котором левая часть – многочлен с известными коэффициентами, а правая часть – многочлен с неопределенными коэффициентами.

Существует два способа определения неизвестных коэффициентов: метод неопределенных коэффициентов и метод частных значений.

Метод неопределенных коэффициентов.

Т.к. многочлены тождественно равны, то равны коэффициенты при одинаковых степенях . Приравнивая коэффициенты при одинаковых степеняхв многочленах левой и правой частей, получим систему линейных уравнений. Решая систему, определяем неопределенные коэффициенты.

Метод частных значений.

Т.к. многочлены тождественно равны, то, подставляя вместо в левую и правую части любое число, получим верное равенство, линейное относительно неизвестных коэффициентов. Подставляя столько значений, сколько неизвестных коэффициентов, получим систему линейных уравнений. Вместов левую и правую части можно подставлять любые числа, однако более удобно подставлять корни знаменателей дробей.

После нахождения значений неизвестных коэффициентов, исходная дробь записывается в виде суммы простейших дробей в подынтегральное выражение и осуществляется ранее рассмотренное интегрирование по каждой простейшей дроби.

Схема интегрирования рациональных дробей:

1. Если подынтегральная дробь неправильная, то необходимо представить ее в виде суммы многочлена и правильной рациональной дроби (т.е. разделить многочлен числителя на многочлен знаменателя с остатком). Если подынтегральная дробь правильная сразу переходим ко второму пункту схемы.

2. Разложить знаменатель правильной рациональной дроби на множители, если это возможно.

3. Разложить правильную рациональную дробь на сумму простейших рациональных дробей, используя метод неопределенных коэффициентов.

4. Проинтегрировать полученную сумму многочлена и простейших дробей.

Пример 28.

Найти интегралы от рациональных дробей:

а)
; б)
; в)
.

Решение.

а)
.

Т.к. подынтегральная функция неправильная рациональная дробь, то выделим целую часть, т.е. представим ее в виде суммы многочлена и правильной рациональной дроби. Разделим многочлен в числителе на многочлен в знаменателе уголком.

Исходный интеграл примет вид:
.

Разложим правильную рациональную дробь на сумму простейших дробей c помощью метода неопределенных коэффициентов:

, получаем:



Решая систему линейных уравнений, получим значения неопределенных коэффициентов: А = 1; В = 3.

Тогда искомое разложение имеет вид:
.

=
.

б)
.

.

Отбросим знаменатели и приравняем левую и правую части:

Приравнивая коэффициенты при одинаковых степенях , получаем систему:





Решая систему из пяти линейных уравнений, находим неопределенные коэффициенты:

.

Найдем исходный интеграл, учитывая полученное разложение:

.

в)
.

Разложим подынтегральную функцию (правильную рациональную дробь) на сумму простейших дробей с помощью метода неопределенных коэффициентов. Разложение ищем в виде:

.

Приведя к общему знаменателю, получим:

Отбросим знаменатели и приравняем левую и правую части:

Для нахождения неопределенных коэффициентов применим метод частных значений. Придадим частные значения , при которых множители обращаются в нуль, т. е. подставим эти значения в последнее выражение и получим три уравнения:


;
;


;
;


;
.

Тогда искомое разложение имеет вид:

Найдем исходный интеграл, учитывая полученное разложение:

Функция F(x), дифференцируемая в данном промежутке X, называется первообразной для функции f(x), или интегралом от f(x), если для всякого x ∈X справедливо равенство:

F " (x) = f(x). (8.1)

Нахождение всех первообразных для данной функции называется ее интегрированием. Неопределенным интегралом функции f(x) на данном промежутке Х называется множество всех первообразных функций для функции f(x); обозначение -

Если F(x) - какая-нибудь первобразная для функции f(x), то ∫ f(x)dx = F(x) + C, (8.2)

где С- произвольная постоянная.

Таблица интегралов

Непосредственно из определения получаем основные свойства неопределенного интеграла и список табличных интегралов:

1) d∫f(x)dx=f(x)

2)∫df(x)=f(x)+C

3) ∫af(x)dx=a∫f(x)dx (a=const)

4) ∫(f(x)+g(x))dx = ∫f(x)dx+∫g(x)dx

Список табличных интегралов

1. ∫x m dx = x m+1 /(m + 1) +C; (m ≠ -1)

3.∫a x dx = a x /ln a + C (a>0, a ≠1)

4.∫e x dx = e x + C

5.∫sin x dx = cosx + C

6.∫cos x dx = - sin x + C

7. = arctg x + C

8. = arcsin x + C

10. = - ctg x + C

Замена переменной

Для интегрирования многих функций применяют метод замены переменной или подстановки, позволяющий приводить интегралы к табличной форме.

Если функция f(z) непрерывна на [α,β], функция z =g(x) имеет на непрерывную производную и α ≤ g(x) ≤ β, то

∫ f(g(x)) g " (x) dx = ∫f(z)dz, (8.3)

причем после интегрирования в правой части следует сделать подстановку z=g(x).

Для доказательства достаточно записать исходный интеграл в виде:

∫ f(g(x)) g " (x) dx = ∫ f(g(x)) dg(x).

Например:

Метод интегрирования по частям

Пусть u = f(x) и v = g(x) - функции, имеющие непрерывные . Тогда, по произведения,

d(uv))= udv + vdu или udv = d(uv) - vdu.

Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:

∫ udv = uv - ∫ vdu (8.4.)

Эта формула выражает правило интегрирования по частям . Оно приводит интегрирование выражения udv=uv"dx к интегрированию выражения vdu=vu"dx.

Пусть, например, требуется найти ∫xcosx dx. Положим u = x, dv = cosxdx, так что du=dx, v=sinx. Тогда

∫xcosxdx = ∫x d(sin x) = x sin x - ∫sin x dx = x sin x + cosx + C.

Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но есть целые классы интегралов, например,

∫x k ln m xdx, ∫x k sinbxdx, ∫ x k cosbxdx, ∫x k e ax и другие, которые вычисляются именно с помощью интегрирования по частям.

Определенный интеграл

Понятие определенного интеграла вводится следующим образом. Пусть на отрезке определена функция f(x). Разобьем отрезок [ a,b] на n частей точками a= x 0 < x 1 <...< x n = b. Из каждого интервала (x i-1 , x i) возьмем произвольную точку ξ i и составим сумму f(ξ i) Δx i где
Δ x i =x i - x i-1 . Сумма вида f(ξ i)Δ x i называется интегральной суммой , а ее предел при λ = maxΔx i → 0, если он существует и конечен, называется определенным интегралом функции f(x) от a до b и обозначается:

F(ξ i)Δx i (8.5).

Функция f(x) в этом случае называется интегрируемой на отрезке , числа a и b носят название нижнего и верхнего предела интеграла .

Для определенного интеграла справедливы следующие свойства:

4), (k = const, k∈R);

5)

6)

7) f(ξ)(b-a) (ξ∈).

Последнее свойство называется теоремой о среднем значении .

Пусть f(x) непрерывна на . Тогда на этом отрезке существует неопределенный интеграл

∫f(x)dx = F(x) + C

и имеет место формула Ньютона-Лейбница , cвязывающая определенный интеграл с неопределенным:

F(b) - F(a). (8.6)

Геометрическая интерпретация: определенный интеграл представляет собой площадь криволинейной трапеции, ограниченной сверху кривой y=f(x), прямыми x = a и x = b и отрезком оси Ox .

Несобственные интегралы

Интегралы с бесконечными пределами и интегралы от разрывных (неограниченных) функций называются несобственными. Несобственные интегралы I рода - это интегралы на бесконечном промежутке, определяемые следующим образом:

(8.7)

Если этот предел существует и конечен, то называется сходящимся несобственным интегралом от f(x) на интервале [а,+ ∞), а функцию f(x) называют интегрируемой на бесконечном промежутке [а,+ ∞). В противном случае про интеграл говорят, что он не существует или расходится .

Аналогично определяются несобственные интегралы на интервалах (-∞,b] и (-∞, + ∞):

Определим понятие интеграла от неограниченной функции. Если f(x) непрерывна для всех значений x отрезка , кроме точки с, в которой f(x) имеет бесконечный разрыв, то несобственным интегралом II рода от f(x) в пределах от a до b называется сумма:

если эти пределы существуют и конечны. Обозначение:

Примеры вычисления интегралов

Пример 3.30. Вычислить ∫dx/(x+2).

Решение. Обозначим t = x+2, тогда dx = dt, ∫dx/(x+2) = ∫dt/t = ln|t| + C = ln|x+2| + C .

Пример 3.31 . Найти ∫ tgxdx.

Решение. ∫ tgxdx = ∫sinx/cosxdx = - ∫dcosx/cosx. Пусть t=cosx, тогда ∫ tgxdx = -∫ dt/t = - ln|t| + C = -ln|cosx|+C.

Пример 3.32 . Найти ∫dx/sinx

Решение.

Пример 3.33. Найти .

Решение. = .

Пример 3.34 . Найти ∫arctgxdx.

Решение. Интегрируем по частям. Обозначим u=arctgx, dv=dx. Тогда du = dx/(x 2 +1), v=x, откуда ∫arctgxdx = xarctgx - ∫ xdx/(x 2 +1) = xarctgx + 1/2 ln(x 2 +1) +C; так как
∫xdx/(x 2 +1) = 1/2 ∫d(x 2 +1)/(x 2 +1) = 1/2 ln(x 2 +1) +C.

Пример 3.35 . Вычислить ∫lnxdx.

Решение. Применяя формулу интегрирования по частям, получим:
u=lnx, dv=dx, du=1/x dx, v=x. Тогда ∫lnxdx = xlnx - ∫x 1/x dx =
= xlnx - ∫dx + C= xlnx - x + C.

Пример 3.36 . Вычислить ∫e x sinxdx.

Решение. Обозначим u = e x , dv = sinxdx, тогда du = e x dx, v =∫sinxdx= - cosx → ∫ e x sinxdx = - e x cosx + ∫ e x cosxdx. Интеграл ∫e x cosxdx также интегрируем по частям: u = e x , dv = cosxdx, du=e x dx, v=sinx. Имеем:
∫ e x cosxdx = e x sinx - ∫ e x sinxdx. Получили соотношение ∫e x sinxdx = - e x cosx + e x sinx - ∫ e x sinxdx, откуда 2∫e x sinx dx = - e x cosx + e x sinx + С.

Пример 3.37. Вычислить J = ∫cos(lnx)dx/x.

Решение. Так как dx/x = dlnx, то J= ∫cos(lnx)d(lnx). Заменяя lnx через t, приходим к табличному интегралу J = ∫ costdt = sint + C = sin(lnx) + C.

Пример 3.38 . Вычислить J = .

Решение. Учитывая, что = d(lnx), производим подстановку lnx = t. Тогда J = .

Пример 3.39 . Вычислить интеграл J = .

Решение. Имеем: . Поэтому =
=
=. вводится так sqrt(tan(x/2)).

А если в окне результата нажмете на Show steps в правом верхнем углу, то получите подробное решение.

Следующая формула называется формулой интегрирования по частям в неопределённом интеграле:

Для применения формулы интегрирования по частям подынтегральное выражение нужно разбить на два множителя. Один из них обозначается через u , а остальная часть относится ко второму множителю и обозначается через dv . Затем дифференцированием находится du и интегрированием - функция v . При этом за u dv - такую часть подынтегрального выражения, которая легко интегрируется.

Когда выгодно применять метод интегрирования по частям? Тогда, когда подынтегральная функция содержит :

1) - логарифмические функции, а также обратные тригонометрические функции (с приставкой "arc"), тогда на основании продолжительного опыта интегрирования по частям эти функции обозначаются через u ;

2) , , - синус, косинус и экспоненту, умноженные на P (x ) - произвольный многочлен от икса, тогда эти функции обозначают через dv , а многочлен - через u ;

3) , , , , в этом случае интегрирование по частям применяется дважды.

Поясним ценность метода интегрирования по частям на примере первого случая. Пусть выражение под знаком интеграла содержит логарифмическую функцию (таким будет пример 1). Применением интегрирования по частям такой интеграл сводится вычислению интеграла только алгебраических функций (чаще всего многочлена), то есть не содержащих логарифмическую или обратную тригонометрическую функцию. Применяя данную в самом начале урока формулу интегрирования по частям

получаем в первом слагаемом (без интеграла) логарифмическую функцию, а во втором слагаемом (под знаком интеграла) - функцию, не содержащую логарифма. Интеграл алгебраической функции намного проще интеграла, под знаком которого находятся отдельно или вместе с алгебраическим множителем логарифмическая или обратная тригонометрическая функция.

Таким образом, с помощью формулы интегрирования по частям интегрирование не выполняется сразу: нахождение данного интеграла сводится к нахождению другого. Смысл формулы интегрирования по частям состоит в том, чтобы в результате её применения новый интеграл оказался табличным или хотя бы стал проще первоначального.

Метод интегрирования по частям основан на использовании формулы дифференцирования произведения двух функций:

то её можно записать в виде

который и был приведён в самом начале урока.

При нахождении интегрированием функции v для неё получается бесконечное множество первообразных функций. Чтобы применить формулу интегрирования по частям, можно взять любую из них, а значит, и ту, которая соответствует произвольной постоянной С , равной нулю. Поэтому при нахождении функции v произвольную постоянную С вводить не следует.

Есть у метода интегрирования по частям совершенно особенное применение: с его помощью можно выводить рекуррентные формулы для нахождения первообразных функций, когда требуется понизить степень функций под знаком интеграла. Понижение степени необходимо, когда не существует табличных интегралов для таких, например, функций, как синусы и косинусы в степени более второй и их произведения. Рекуррентная формула - это формула для нахождения очередного члена последовательности через предыдущий член. Для обозначенных случаев цель достигается последовательным понижением степени. Так, если подынтегральная функция - синус в четвёртой степени от икса, то методом интегрирования по частям можно найти формулу для интеграла синуса в третьей степени и так далее. Описанной задаче посвящен последний параграф этого урока.

Применяем интегрирование по частям вместе

Пример 1. Найти неопределённый интеграл методом интегрирования по частям :

Решение. В подынтегральном выражении - логарифм, который, как мы уже знаем, разумно обозначить через u . Полагаем, что , .

Находим (как уже говорилось в пояснении к теоретической справке, сразу же получаем в первом слагаемом (без интеграла) логарифмическую функцию, а во втором слагаемом (под знаком интеграла) - функцию, не содержащую логарифма):

И снова логарифм...

Пример 2. Найти неопределённый интеграл:

Решение. Пусть , .

Логарифм присутствует в квадрате. Это значит, что его нужно дифференцировать как сложную функцию. Находим
,
.

Второй интеграл вновь находим по частям и получаем уже упомянутое преимущество (в первом слагаемом (без интеграла) логарифмическую функцию, а во втором слагаемом (под знаком интеграла) - функцию, не содержащую логарифма).

Находим изначальный интеграл:

Пример 3.

Решение. Арктангенс, как и логарифм, лучше обозначить через u . Итак, пусть , .

Тогда ,
.

Применяя формулу интегрирования по частям, получаем:

Второй интеграл находим методом замены переменной.

Возвращаясь к переменной x , получаем

.

Находим изначальный интеграл:

.

Пример 4. Найти неопределённый интеграл методом интегрирования по частям :


Решение. Экспоненту лучше обозначить через dv . Разбиваем подынтегральное выражение на два множителя. Полагая, что

Пример 5. Найти неопределённый интеграл методом интегрирования по частям :

.

Решение. Пусть , . Тогда , .

Используя формулу интегрирования по частям (1), находим:

Пример 6. Найти неопределённый интеграл методом интегрирования по частям:

Решение. Синус, как и экспоненту, удобно обозначить через dv . Пусть , .

По формуле интегрирования по частям находим:

Снова применяем интегрирование по частям вместе

Пример 10. Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. Как и во всех подобных случаях, косинус удобно обозначить через dv . Обозначаем , .

Тогда , .

По формуле интегрирования по частям получаем:

Ко второму слагаемому также применяем интегрирование по частям. Обозначаем , .

Применив эти обозначения, интегрируем упомянутое слагаемое:

Теперь находим требуемый интеграл:

Среди интегралов, которые можно решить методом интегрирования по частям, есть и такие, которые не входят ни в одну из трёх упомянутых в теоретической части групп, относительно которых из практики известно, что лучше обозначать через u , а что через dv . Поэтому в этих случаях нужно пользоваться соображением удобства, также приведённым в параграфе "Суть метода интегрирования по частям": за u следует брать такую часть подынтегральной функции, которая при дифференцировании сильно не усложняется, а за dv - такую часть подынтегрального выражения, которая легко интегрируется. Последний пример этого урока - решение именно такого интеграла.

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями:


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top