Техническая целлюлоза и ее применение. Каковы химические и физические свойства целлюлозы

Техническая целлюлоза и ее применение. Каковы химические и физические свойства целлюлозы

5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I). То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.

2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например: n + 3nHNO3 → n + 3n H2O.

Применение целлюлозы.

Получение ацетатного волокна

68. Целлюлоза, ее физические свойства

Нахождение в природе. Физические свойства.

1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.

2. Отсюда происходит и ее название (от лат. «целлула» – клетка).

3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.

4. Волокна хлопка содержат до 98 % целлюлозы.

5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.

6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы.

7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.

8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Строение целлюлозы:

1) целлюлоза, как и крахмал, является природным полимером;

2) эти вещества имеют даже одинаковые по составу структурные звенья – остатки молекул глюкозы, одну и ту же молекулярную формулу (С6H10O5)n;

3) значение n у целлюлозы обычно выше, чем у крахмала: средняя молекулярная масса ее достигает нескольких миллионов;

4) основное различие между крахмалом и целлюлозой – в структуре их молекул.

Нахождение целлюлозы в природе.

1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна.

2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон.

Каковы химические и физические свойства целлюлозы

В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити.

4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении.

Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах:

1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может;

2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.

69. Химические свойства целлюлозы и ее применение

1. Из повседневной жизни известно, что целлюлоза хорошо горит.

2. При нагревании древесины без доступа воздуха происходит термическое разложение целлюлозы. При этом образуются летучие органические вещества, вода и древесный уголь.

3. В числе органических продуктов разложения древесины – метиловый спирт, уксусная кислота, ацетон.

4. Макромолекулы целлюлозы состоят из звеньев, аналогичных тем, которые образуют крахмал, она подвергается гидролизу, и продуктом ее гидролиза, как и у крахмала, будет глюкоза.

5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I).

69. Химические свойства целлюлозы и ее применение

То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.

6. Суммарно гидролиз целлюлозы может быть выражен тем же уравнением, что и гидролиз крахмала: (С6H10O5)n + nН2О = nС6H12O6.

7. Структурные звенья целлюлозы (С6H10O5)n содержат гидроксильные группы.

8. За счет этих групп целлюлоза может давать простые и сложные эфиры.

9. Большое значение имеют азотно-кислые эфиры целлюлозы.

Особенности азотно-кислых эфиров целлюлозы.

1. Они получаются при действии на целлюлозу азотной кислотой в присутствии серной кислоты.

2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например: n + 3nHNO3 -> n + 3n H2O.

Общее свойство нитратов целлюлозы – их чрезвычайная горючесть.

Тринитрат целлюлозы, называемый пироксилином, – сильновзрывчатое вещество. Он применяется для производства бездымного пороха.

Очень важными являются также уксусно-кислые эфиры целлюлозы – диацетат и триацетат целлюлозы. Диацетат и триацетат целлюлозы по внешнему виду сходны с целлюлозой.

Применение целлюлозы.

1. Благодаря своей механической прочности в составе древесины используется в строительстве.

2. Из нее изготавливают разного рода столярные изделия.

3. В виде волокнистых материалов (хлопка, льна) используется для изготовления нитей, тканей, канатов.

4. Выделенная из древесины (освобожденная от сопутствующих веществ) целлюлоза идет на изготовление бумаги.

О.А. Носкова, М.С. Федосеев

Химия древесины

И синтетических полимеров

ЧАСТЬ 2

Утверждено

Редакционно-издательским советом университета

в качестве конспекта лекций

Издательство

Пермского государственного технического университета

Рецензенты:

канд. техн. наук Д.Р. Нагимов

(ЗАО «Карбокам»);

канд. техн. наук, проф. Ф.Х. Хакимова

(Пермский государственный технический университет)

Носкова, О.А.

Н84 Химия древесины и синтетических полимеров: конспект лекций: в 2 ч. / О.А. Носкова, М.С. Федосеев. – Пермь: Изд-во Перм. гос. техн. ун-та, 2007. – Ч. 2. – 53 с.

ISBN 978-5-88151-795-3

Приведены сведения, касающиеся химического строения и свойств основных компонентов древесины (целлюлозы, гемицеллюлоз, лигнина и экстрактивных веществ). Рассмотрены химические реакции этих компонентов, которые протекают при химической переработке древесины или при химической модификации целлюлозы. Также приведены общие сведения о варочных процессах.

Предназначен для студентов специальности 240406 «Технология химической переработки древесины».

УДК 630*813. + 541.6 + 547.458.8

ISBN 978-5-88151-795-3 © ГОУ ВПО

«Пермский государственный

технический университет», 2007

Введение……………………………………………………………………… ……5
1. Химия целлюлозы……………………………………………………….. …….6
1.1. Химическое строение целлюлозы………………………………….. .…..6
1.2. Химические реакции целлюлозы…………………………………….. .……8
1.3. Действие растворов щелочей на целлюлозу………………………… …..10
1.3.1. Щелочная целлюлоза…………………………………………. .…10
1.3.2. Набухание и растворимость технической целлюлозы в растворах щелочей………………………………………………… .…11
1.4. Окисление целлюлозы……………………………………………….. .…13
1.4.1. Общие сведения об окислении целлюлозы. Оксицеллюлоза… .…13
1.4.2. Основные направления окислительных реакций…………… .…14
1.4.3. Свойства оксицеллюлозы………………………………………

Химические свойства целлюлозы.

.…15
1.5. Сложные эфиры целлюлозы…………………………………………. .…15
1.5.1. Общие сведения о получении сложных эфиров целлюлозы.. .…15
1.5.2. Нитраты целлюлозы…………………………………………… .…16
1.5.3. Ксантогенаты целлюлозы…………………………………….. .…17
1.5.4. Ацетаты целлюлозы…………………………………………… .…19
1.6. Простые эфиры целлюлозы…………………………………………… .…20
2. Химия гемицеллюлоз…………………………………………………… .…21
2.1. Общие понятия о гемицеллюлозах и их свойствах…………………. .…21
.2.2. Пентозаны…………………………………………………………….. .…22
2.3. Гексозаны……………………………………………………………… …..23
2.4. Уроновые кислоты……………………………………………………. .…25
2.5. Пектиновые вещества………………………………………………… .…25
2.6. Гидролиз полисахаридов…………………………………………….. .…26
2.6.1. Общие понятия о гидролизе полисахаридов…………………. .…26
2.6.2. Гидролиз полисахаридов древесины разбавленными минеральными кислотами……………………………………………….. …27
2.6.3. Гидролиз полисахаридов древесины концентрированными минеральными кислотами………………………………………………. …28
3. Химия лигнина…………………………………………………………….. …29
3.1. Структурные единицы лигнина………………………………………. …29
3.2. Методы выделения лигнина…………………………………………… …30
3.3. Химическое строение лигнина………………………………………… …32
3.3.1. Функциональные группы лигнина………………….……………..32
3.3.2. Основные типы связей между структурными единицами лигнина…………………………………………………………………….35
3.4. Химические связи лигнина с полисахаридами……………………….. ..36
3.5. Химические реакции лигнина………………………………………….. ….39
3.5.1. Общая характеристика химических реакций лигнина……….. ..39
3.5.2. Реакции элементарных звеньев………………………………… ..40
3.5.3. Макромолекулярные реакции………………………………….. ..42
4. Экстрактивные вещества………………………………………………… ..47
4.1. Общие сведения………………………………………………………… ..47
4.2. Классификация экстрактивных веществ……………………………… ..48
4.3. Гидрофобные экстрактивные вещества………………………………. ..48
4.4. Гидрофильные экстрактивные вещества……………………………… ..50
5. Общие понятия о варочных процессах…………………………………. ..51
Библиографический список…………………………………………………. ..53

Введение

Химия древесины – это раздел технической химии, изучающий химический состав древесины; химизм образования, строения и химические свойства веществ, составляющих мертвую древесную ткань; методы выделения и анализа этих веществ, а также химическую сущность природных и технологических процессов переработки древесины и ее отдельных компонентов.

В первой части конспекта лекций «Химия древесины и синтетических полимеров», изданной в 2002 г., рассмотрены вопросы, касающиеся анатомии древесины, строения клеточной оболочки, химического состава древесины, физических и физико-химических свойств древесины.

Во второй части конспекта лекций «Химия древесины и синтетических полимеров» рассмотрены вопросы, касающиеся химического строения и свойств основных компонентов древесины (целлюлозы, гемицеллюлоз, лигнина).

В конспекте лекций приведены общие сведения о варочных процессах, т.е. о получении технической целлюлозы, которая используется в производстве бумаги и картона. В результате химических превращений технической целлюлозы получают ее производные – простые и сложные эфиры, из которых производят искусственные волокна (вискозные, ацетатные), пленки (кино-, фото-, упаковочные пленки), пластмассы, лаки, клеи. В этой части конспекта также кратко рассмотрены получение и свойства эфиров целлюлозы, которые нашли широкое применение в промышленности.

Химия целлюлозы

Химическое строение целлюлозы

Целлюлоза – один из важнейших природных полимеров. Это основ-ной компонент растительных тканей. Природная целлюлоза содержится в больших количествах в хлопке, льне и других волокнистых растениях, из которых получают природные текстильные целлюлозные волокна. Хлопковые волокна представляют собой почти чистую целлюлозу (95–99 %). Более важным источ-ником промышленного получения целлюло-зы (технической целлюлозы) служат древесные растения. В древесине различных пород деревьев массовая доля целлюлозы составляет в сред-нем 40–50 %.

Целлюлоза – полисахарид, макромолекулы которого построены из остатков D -глюкозы (звеньев β-D -ангидроглюкопиранозы), соеди-ненных β-гликозидными связями 1–4:

Целлюлоза представляет собой линейный гомополимер (гомополи-сахарид), относящийся к гетероцепным полимерам (полиацеталям). Это стереорегулярный полимер, в цепи которого стереоповторяющимся звеном служит остаток целлобиозы. Суммарную формулу целлюлозы можно представить (С6Н10О5)п или [С6Н7О2 (ОН)3]п . В каждом мономерном звене содержатся три спиртовых гидроксильных группы, из которых одна первичная –СН2ОН и две (у С2 и С3) вторичные –СНОН–.

Концевые звенья отличаются от остальных звеньев цепи. Одно кон-цевое звено (условно правое – нередуцирующее) имеет дополнительный свободный вторичный спиртовый гидроксил (у С4). Другое концевое звено (условно левое – редуцирующее) содержит свободный гликозидный (полуацетальный) гидрок-сил (у С1) и, следовательно, может существовать в двух таутомерных формах – циклической (цолуацетальной) и открытой (альдегидной) :

Концевая альдегидная группа придает целлюлозе редуцирующую (восстанавливающую) способность. Например, целлюлоза может вос-станавливать медь из Сu2+ в Сu+:

Количество восстановленной меди (медное число ) служит качественной характеристикой длины цепей целлюлозы и показывает ее степень окислительной и гидролитической деструкции.

Природная целлюлоза имеет высокую степень полимеризации (СП): древесная – 5000–10000 и выше, хлопковая – 14000–20000. При выделении из растительных тканей целлюлоза несколько разрушается. Техническая древесная целлюлоза имеет СП около 1000–2000. СП целлюлозы определяют главным образом вискозиметрическим методом, используя в качест-ве растворителей некоторые комплексные основания: медноаммиачный реактив(ОН)2, куприэтилендиамин (ОН)2, кадмийэтилендиамин (кадоксен) (ОН)2 и др.

Выделенная из растений целлюлоза всегда полидисперсна, т.е. содер-жит макромолекулы различной длины. Степень полидисперсности целлю-лозы (молекулярную неоднородность) определяют методами фракцио-нирования, т.е. разделения образца целлюлозы на фракции с определенной молекулярной массой. Свойства образца целлюлозы (механическая прочность, растворимость) зависят от средней СП и степени полидисперс-ности.

12345678910Следующая ⇒

Дата публикования: 2015-11-01; Прочитано: 1100 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Структура, свойства, функции полисахаридов (гомо- и гетерополисахариды).

ПОЛИСАХАРИДЫ – это высокомолекулярные вещества (полимеры) , состоящие из большого количества моносахаридов. По составу их делят на гомополисахариды и гетерополисахариды.

Гомополисахариды – полимеры, состоящие из моносахаридов одного вида . Например, гликоген, крахмал построены только из молекул α-глюкозы (α-D-глюкопиранозы), мономером клетчатки (целлюлозы) так же является β-глюкоза.

Крахмал. Это резервный полисахарид растений. Мономером крахмала является α-глюкоза . Остатки глюкозы в молекуле крахмала на линейных участках связаны между собой α-1,4-гликозидными , а в точках ветвления – α-1,6-гликозидными связями .

Крахмал представляет собой смесь двух гомополисахаридов: линейного – амилозы (10-30%) и разветвленного – амилопектина (70-90%).

Гликоген. Это основной резервный полисахарид тканей человека и животных. Молекула гликогена имеет примерно в 2 раза более разветвленное строение, чем амилопектин крахмала. Мономером гликогена является α-глюкоза . В молекуле гликогена остатки глюкозы на линейных участках связаны между собой α-1,4-гликозидными , а в точках ветвления – α-1,6-гликозидными связями .

Клетчатка. Это наиболее распространенный структурный растительный гомополисахарид. В линейной молекуле клетчатки мономеры β-глюкозы соединены между собой β-1,4-гликозидными связями . Клетчатка не усваивается в организме человека, но, ввиду своей жесткости, раздражает слизистую желудочно-кишечного тракта, тем самым, усиливает перистальтику и стимулирует выделение пищеварительных соков, способствует формированию каловых масс.

Пектиновые вещества - полисахариды, мономером которых является D-галактуроновая кислота , остатки которой соединены α-1,4-гликозидными связями. Содержатся в плодах и овощах и для них характерно желеобразование в присутствии органических кислот, что используется в пищевой промышленности (желе, мармелад).

Гетерополисахариды (мукополисахариды, гликозаминогликаны)– полимеры, состоящие из моносахаридов различного вида . По строениюони представляют

неразветвленные цепи построены из повторяющихся дисахаридных остатков , в состав которых обязательно входят аминосахара (глюкозамин, или галактозамин) и гексуроновые кислоты (глюкуроновая, или идуроновая).

Физические, химические свойства целлюлозы

Представляют собой желеподобные вещества, выполняют ряд функций, в т.ч. защитную (слизь), структурную, являются основой межклеточного вещества.

В организме гетерополисахариды не встречаются в свободном состоянии, а всегда связаны с белками (гликопротеины и протеогликаны) или липидами (гликолипиды).

По строению и свойствам делятся на кислые и нейтральные.

КИСЛЫЕ ГЕТЕРОПОЛИСАХАРИДЫ :

В своём составе имеют гексуроновую или серную кислоты. Представители:

Гиалуроновая кислота является основным структурным компонентом межклеточного вещества, способным связывать воду («биологический цемент»). Растворы гиалуроновой кислоты обладают высокой вязкостью, поэтому служат барьером для проникновения микроорганизмов, участвует в регуляции водного обмена, является основной частью межклеточного вещества).

Хондроитинсульфаты.являются структурными компонентами хрящей, связок, сухожилий, костей, клапанов сердца.

Гепарин антикоагулянт (препятствует свёртыванию крови), обладает противовоспалительным действием, активатор ряда ферментов.

НЕЙТРАЛЬНЫЕ ГЕТЕРОПОЛИСАХАРИДЫ: входят в состав гликопротеинов сыворотки крови, муцинов слюны, мочи и др, построенны из аминосахаров и сиаловых к-т. Нейтральные ГП входят в состав мн. ферментов и гормонов.

СИАЛОВЫЕ КИСЛОТЫ – соединение нейраминовой кислоты с уксусной или с аминокислотой – глицином, входят в состав клеточных оболочек, биологических жидкостей. Сиаловые кислоты определяют для диагностики системных заболеваний (ревматизм, системная красная волчанка).

Природная целлюлоза, или клетчатка, является основным веществом, из которого построены стенки растительных клеток, и поэтому растительное сырье разных видов служит единственным источником производства целлюлозы. Целлюлоза представляет собой природный полисахарид, линейные-цепевидные макромолекулы которого построены из элементарных звеньев?-D-ангидро-глюкопиранозы, соединенных между собой 1--4 глюкозидными связями. Эмпирическая формула целлюлозы (С6Н10О5)и, где п -- степень полимеризации.

Каждое элементарное звено целлюлозы за исключением концевых звеньев содержит три спиртовые гидроксильные группы. Поэтому формулу целлюлозы часто представляют в виде [С6Н7О2(ОН)3]. На одном конце макромолекулы целлюлозы находится звено, имеющее дополнительный вторичный спиртовой гидролиз у 4-го атома углерода, на другом -- звено, имеющее свободный глюкозидный (полуацетальный) гидроксил у 1-го атома углерода. Это звено придает целлюлозе восстанавливающие (редуцирующие) свойства.

Степень полимеризации (СП) природной древесной целлюлозы находится в пределах 6000--14 000. СП характеризует длину линейных макромолекул целлюлозы и, следовательно, определяет те свойства целлюлозы, которые зависят от длины целлюлозных цепей. Любой образец целлюлозы состоит из макромолекул различной длины, т. е., является полидисперсным. Поэтому СП обычно представляет усредненную степень полимеризации. СП целлюлозы связана с молекулярной массой соотношением СП = М/162, где 162 -- молекулярная масса элементарного звена целлюлозы. В природных волокнах (оболочке клеток) линейные цепевидные макромолекулы целлюлозы водородными и межмолекулярными силами связи объединены в микрофибриллы неопределенной длины, диаметром около 3,5 нм. В каждой микрофибрилле насчитывается большое число (примерно 100--200) целлюлозных цепей, расположенных вдоль оси микрофибриллы. Микрофибриллы, располагаясь по спирали, образуют агрегаты из нескольких микрофибрилл-- фибриллы, или пряди, диаметром около 150 нм, из которых построены слои клеточных стенок.

В зависимости от режима обработки растительного сырья в процессе варки можно получить продукты с различным выходом, определяемым отношением массы полученного полуфабриката к массе исходного растительного сырья (%). Продукт с выходом от -80 до 60 % массы сырья называется полуцеллюлозой, для которой характерно высокое содержание лигнина (15--20%). Лигнин межклеточного вещества в полуцеллюлозе в процессе варки растворяется не полностью (часть его остается в полуцеллюлозе); волокна соединены между собой еще настолько прочно, что для их разделения и превращения в волокнистую массу необходимо применять механический размол. Продукт с выходом от 60 до 50 % называется целлюлозой высокого выхода (ЦВВ). ЦВВ разделяется на волокна без механического размола с помощью размыва струей воды, но содержит еще значительное количество остаточного лигнина в клеточных стенках. Продукт с выходом от 50 до 40% называется целлюлозой нормального выхода, которая по степени делигнификации, характеризующей процентное содержание остаточного лигнина в стенках волокон, разделяется на целлюлозу жесткую (3--8% лигнина), среднежесткую (1,3--3% лигнина) и мягкую (менее 1,5 % лигнина).

В результате варки растительного сырья получают небеленую целлюлозу, представляющую продукт с относительно низкой белизной, содержащий еще большее число компонентов древесины, сопровождающих целлюлозу. Освобождение от них продолжением варочного процесса связано со значительным разрушением целлюлозы и, как следствие этого, снижением выхода и ухудшением ее свойств. Для получения целлюлозы с высокой белизной -- беленой целлюлозы, наиболее освобожденной от лигнина и экстрактивных веществ, техническую целлюлозу подвергают отбелке химическими отбеливающими реагентами. Для более полного удаления гемицеллюлоз целлюлозу подвергают дополнительной щелочной обработке (облагораживанию), получая в результате облагороженную целлюлозу. Облагораживание обычно совмещают с процессом отбелки. Отбелке и облагораживанию подвергают преимущественно мягкую целлюлозу и целлюлозу средней жесткости, предназначенные как для производства бумаги, так и для химической переработки.)

Полуцеллюлоза, ЦВВ, небеленая целлюлоза нормального выхода, беленая, полубеленая и облагороженная целлюлозы являются волокнистыми полуфабрикатами, находящими широкое практическое применение для производства самых разнообразных видов бумаги и картона. На эти цели перерабатывается около 93 % всей вырабатываемой в мире целлюлозы. Остальная часть целлюлозы служит сырьем для химической переработки.

Для характеристики свойств и качества технической целлюлозы, определяющих ее потребительскую ценность, применяют целый ряд различных показателей. Рассмотрим наиболее важные из них.

Содержание пентозанов в сульфитных целлюлозах составляет от 4 до 7 %, а в сульфатных целлюлозах той же степени делигнификации 10--11 %. Наличие пентозанов в целлюлозе способствует повышению ее механической прочности, улучшает проклейку, размалываемость, поэтому более полное сохранение их в целлюлозе для производства бумаги и картона благоприятно сказывается на качестве продукции. В целлюлозе для химической переработки пентозаны -- нежелательная примесь.

Содержание смолы в сульфитной хвойной целлюлозе высокое и достигает 1--1,5 %, так как сульфитная варочная кислота не растворяет смолистых веществ древесины. Щелочные варочные растворы растворяют смолы, поэтому их содержание в целлюлозе щелочных варок невелико и составляет 0,2--0,3 %. Высокое содержание смолы в целлюлозе, особенно так называемой «вредной смолы», создает затруднения в бумажном производстве вследствие липких смолистых отложений на оборудовании.

Медное число характеризует степень деструкции целлюлозы в процессах варки, отбелки и облагораживания. В конце каждой целлюлозной молекулы имеется альдегидная группа, способная восстанавливать соли окисной меди до закиси меди, и чем больше деструктирована целлюлоза, тем больше меди может восстановить 100 г целлюлозы в пересчете на абсолютно сухую массу. Закись меди пересчитывают в металлическую медь и выражают в граммах. Для мягких целлюлоз медное число выше, чем для жестких. Целлюлоза щелочных варок имеет низкое медное число, около 1,0, сульфитная--1,5--2,5. Отбелка и облагораживание значительно понижают медное число.

Степень полимеризации (СП) определяется измерением вязкости растворов целлюлозы вискозиметрическим методом. Техническая целлюлоза неоднородна и представляет собой смесь высокомолекулярных фракций с различной СП. Определяемая СП выражает усредненную длину целлюлозных цепей и для технических целлюлоз находится в пределах 4000--5500.

Механические прочностные свойства целлюлозы испытывают после размола ее до степени помола 60? ШР. Наиболее часто определяют сопротивление разрыву, излому, продавливанию и раздиранию. В зависимости от вида сырья, способа получения, режима обработки и других факторов перечисленные показатели могут колебаться в очень широких пределах. Бумагообразующие свойства -- это совокупность свойств, обусловливающих достижение требуемого качества изготовляемой бумаги и характеризуемых рядом разнообразных показателей, например поведением волокнистого материала в технологических процессах изготовления из него бумаги, влиянием его на свойства получаемой бумажной массы и готовой бумаги.

Сорность целлюлозы определяется подсчетом соринок с обеих сторон смоченного образца целлюлозной папки при просвечивании его источником света определенной силы и выражается числом соринок, отнесенных к 1 и1 поверхности. Например, содержание соринок для различных беленых целлюлоз, допускаемое стандартами, может колебаться от 160 до" 450 шт. на 1 м2, а для небеленых целлюлоз -- от 2000 до 4000 шт.

Техническая небеленая целлюлоза пригодна для изготовления многих видов продукции -- газетной и мешочной бумаги, тарного картона и др. Для получения высших сортов писчей и печатной бумаги, где требуется повышенная белизна, используют среднежесткую и мягкую целлюлозу, которую отбеливают химическими реагентами, например хлором, двуокисью хлора, гипохлоритом кальция или натрия, перекисью водорода.

Особо очищенную (облагороженную) целлюлозу, содержащую 92--97 % альфа-целлюлозы (т. е. фракции целлюлозы, нерастворимой в 17,5%-ном водном растворе едкого натра) используют для изготовления химических волокон, в том числе вискозного шелка и высокопрочного вискозного кордного волокна для производства автомобильных шин.

Ставшие привычными для нас обыденные предметы, которые повсеместно встречаются в нашей повседневной жизни, невозможно было бы представить без использования продуктов органической химии. Задолго до Ансельма Пайя, в результате которых он смог обнаружит и описать в 1838 году полисахарид, получивший "целлюлоза" (производная французского cellulose и латинского cellula, что означает «клетка, клетушка»), свойство этого вещества активно использовалось в производстве самых незаменимых вещей.

Расширение знаний о целлюлозе привело к появлению самых разнообразных вещей, изготовленных на её основе. Бумага различных сортов, картон, детали из пластмассы и из искусственных вискозных, медно-аммиачных), полимерные плёнки, эмали и лаки, моющие средства, пищевые добавки (E460) и даже бездымный порох являются продуктами производства и переработки целлюлозы.

В чистом виде целлюлоза представляет собой белое твердое вещество с довольно привлекательными свойствами, проявляет высокую устойчивость к различным химическим и физическим воздействиям.

Природа избрала целлюлозу (клетчатку) своим главным строительным материалом. В растительном мире она составляет основу для деревьев и прочих высших растений. В самом чистом виде в природе целлюлоза находится в волосках семян хлопчатника.

Уникальные свойства этого вещества определяются его оригинальным строением. Формула целлюлозы имеет общую запись (C6 H10 O5)n из чего мы видим ярко выраженное полимерное строение. Повторяющийся огромное количество раз остаток β-глюкозы, имеющий более развернутый вид как -[С6 Н7 О2 (OH)3]-, соединяется в длинную линейную молекулу.

Молекулярная формула целлюлозы определяет её уникальные химические свойства противостоять воздействию агрессивных сред. Также целлюлоза обладает высокой стойкостью к нагреванию, даже при 200 градусах по Цельсию вещество сохраняет свою структуру и не разрушается. Самовоспламенение происходит при температуре в 420°С.

Не менее привлекательна целлюлоза своими физическими свойствами. целлюлозы в виде длинных нитей, содержащих от 300 до 10 000 глюкозных остатков, не имеющих боковых ответвлений, во многом определяет высокую устойчивость этого вещества. Формула глюкозы показывает, как множество предают целлюлозным волокнам не только большую механическую прочность, но и высокую эластичность. Результатом аналитической обработки множества химических опытов и исследований стало создание модели макромолекулы целлюлозы. Она представляет собой жесткую спираль с шагом в 2-3 элементарных звена, которая стабилизирована за счёт внутримолекулярных водородных связей.

Не формула целлюлозы, а степень её полимеризации является основной характеристикой для многих веществ. Так в необработанном хлопке число глюкозидных остатков достигает 2500-3000, в очищенном хлопке - от 900 до 1000, очищенная древесная масса обладает показателем 800-1000, в регенеративной целлюлозе их количество сокращается до 200-400, а в промышленном ацетате целлюлозы он составляет от 150 до 270 «звеньев» в молекуле.

Продуктом для получения целлюлозы служит главным образом это древесина. Основной технологический процесс производства предполагает варку щепы с различными химическими реагентами с последующей очисткой, сушкой и резкой готового продукта.

Последующая обработка целлюлозы дает возможность получать множество материалов с заданными физическими и химическими свойствами, позволяющими производить самые различные продукты, без которых жизнь современного человека трудно представить. Уникальная формула целлюлозы, скорректированная химической и физической обработкой, стала основой для получения материалов, не имеющих аналогов в природе, что позволило их широко применять в химической промышленности, медицине и других отраслях человеческой деятельности.


Целлюлоза (C 6 H 10 O 5) n – природный полимер, полисахарид, состоящий из остатков β-глюкозы, молекулы имеют линейное строение. В каждом остатке молекулы глюкозы содержатся три гидроксильные группы, поэтому она проявляет свойства многоатомного спирта.

Физические свойства

Целлюлоза – волокнистое вещество, нерастворимое ни в воде, ни в обычных органических растворителях, гигроскопична. Обладает большой механической и химической прочностью.

1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.

2. Отсюда происходит и ее название (от лат. «целлула» – клетка).

3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.

4. Волокна хлопка содержат до 98 % целлюлозы.

5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.

6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы.

7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.

8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Химические свойства

1. Целлюлоза – полисахирид, подвергается гидролизу с образованием глюкозы:

(C 6 H 10 O 5) n + nН 2 О → nС 6 Н 12 О 6

2. Целлюлоза – многоатомный спирт, вступает в реакции этерификации с образованием сложных эфиров

(С 6 Н 7 О 2 (ОН) 3) n + 3nCH 3 COOH → 3nH 2 O + (С 6 Н 7 О 2 (ОCOCH 3) 3) n

триацетат целлюлозы

Ацетаты целлюлозы – искусственные полимеры, применяются в производстве ацетатного шёлка, плёнки (киноплёнки), лаков.

Применение

Применение целлюлозы весьма разнообразно. Из неё получают бумагу, ткани, лаки, плёнки, взрывчатые вещества, искусственный шёлк (ацетатный, вискозный), пластмассы (целлулоид), глюкозу и многое другое.

Нахождение целлюлозы в природе.

1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна.

2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон.

3. В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити.

4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении.

Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах:

1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может;

2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.

Химические свойства целлюлозы.

1. Из повседневной жизни известно, что целлюлоза хорошо горит.

2. При нагревании древесины без доступа воздуха происходит термическое разложение целлюлозы. При этом образуются летучие органические вещества, вода и древесный уголь.

3. В числе органических продуктов разложения древесины – метиловый спирт, уксусная кислота, ацетон.

4. Макромолекулы целлюлозы состоят из звеньев, аналогичных тем, которые образуют крахмал, она подвергается гидролизу, и продуктом ее гидролиза, как и у крахмала, будет глюкоза.

5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I). То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.

6. Суммарно гидролиз целлюлозы может быть выражен тем же уравнением, что и гидролиз крахмала: (С 6 H 10 O 5) n + nН 2 О = nС 6 H 12 O 6 .

7. Структурные звенья целлюлозы (С 6 H 10 O 5) n содержат гидроксильные группы.

8. За счет этих групп целлюлоза может давать простые и сложные эфиры.

9. Большое значение имеют азотно-кислые эфиры целлюлозы.

Особенности азотно-кислых эфиров целлюлозы.

1. Они получаются при действии на целлюлозу азотной кислотой в присутствии серной кислоты.

2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например: n + 3nHNO 3 → n + 3n H 2 O.

Общее свойство нитратов целлюлозы – их чрезвычайная горючесть.

Тринитрат целлюлозы, называемый пироксилином, – сильновзрывчатое вещество. Он применяется для производства бездымного пороха.

Очень важными являются также уксусно-кислые эфиры целлюлозы – диацетат и триацетат целлюлозы. Диацетат и триацетат целлюлозы по внешнему виду сходны с целлюлозой.

Применение целлюлозы.

1. Благодаря своей механической прочности в составе древесины используется в строительстве.

2. Из нее изготавливают разного рода столярные изделия.

3. В виде волокнистых материалов (хлопка, льна) используется для изготовления нитей, тканей, канатов.

4. Выделенная из древесины (освобожденная от сопутствующих веществ) целлюлоза идет на изготовление бумаги.

70. Получение ацетатного волокна

Характерные особенности ацетатного волокна.

1. С давних времен человек широко использует природные волокнистые материалы для изготовления одежды и различных изделий домашнего обихода.

2. Одни из этих материалов имеют растительное происхождение и состоят из целлюлозы, например лен, хлопок, другие – животного происхождения, состоят из белков – шерсть, шелк.

3. По мере увеличения потребностей населения и развивающейся техники в тканях стал возникать недостаток волокнистых материалов. Возникла необходимость получать волокна искусственным путем.

Так как они характеризуются упорядоченным, ориентированным вдоль оси волокна расположением цепных макромолекул, то появилась идея превратить природный полимер неупорядоченной структуры путем той или иной обработки в материал с упорядоченным расположением молекул.

4. В качестве исходного природного полимера для получения искусственных волокон берется целлюлоза, выделенная из древесины, или хлопковый пух, остающийся на семенах хлопчатника после того, как с него снимут волокна.

5. Чтобы линейные молекулы полимера расположить вдоль оси образуемого волокна, необходимо их отделить друг от друга, сделать подвижными, способными к перемещению.

Этого можно достичь расплавлением полимера или его растворением.

Расплавить целлюлозу невозможно: при нагревании она разрушается.

6. Целлюлозу необходимо обработать уксусным ангидридом в присутствии серной кислоты (уксусный ангидрид – более сильное этерифицирующее средство, чем уксусная кислота).

7. Продукт этерификации – триацетат целлюлозы – растворяется в смеси дихлорметана СН 2 Сl 2 и этилового спирта.

8. Образуется вязкий раствор, в котором молекулы полимера уже могут перемещаться и принимать тот или иной нужный порядок.

9. С целью получения волокон раствор полимера продавливается через фильеры – металлические колпачки с многочисленными отверстиями.

Тонкие струи раствора опускаются в вертикальную шахту высотой примерно 3 м, через которую проходит нагретый воздух.

10. Под действием теплоты растворитель испаряется, и триацетат целлюлозы образует тонкие длинные волоконца, которые скручиваются затем в нити и идут на дальнейшую переработку.

11. При прохождении через отверстия фильеры макромолекулы, как бревна при сплаве по узкой реке, начинают выстраиваться вдоль струи раствора.

12. В процессе дальнейшей обработки расположение макромолекул в них становится еще более упорядоченным.

Это приводит к большой прочности волоконец и образуемых ими нитей.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top