Какой звук воспринимает человек. Аномальный слух и слух животных

Какой звук воспринимает человек. Аномальный слух и слух животных

Понятие звука и шума. Сила звука.

Звук - физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. Как и любая волна, звук характеризуется амплитудой и спектром частот. Амплитудой звуковой волны называется разница между самым высоким и самым низким значением плотности. Частотой звука называется количество колебаний воздуха в секунду. Частота измеряется в Герцах (Гц).

Волны с разной частотой воспринимаются нами как звук разной высоты. Звук частотой ниже 16 – 20 Гц (диапазона слышимости человека) называют инфразвуком; от 15 – 20 кГц до 1 ГГц, – ультразвуком, от 1 ГГц – гиперзвуком. Среди слышимых звуков можно выделить фонетические (речевые звуки и фонемы, из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка). Музыкальные звуки содержат не один, а несколько тонов, а иногда и шумовые компоненты в широком диапазоне частот.

Шум является разновидностью звука, он воспринимается людьми как неприятный, мешающий или даже вызывающий болезненные ощущения фактор, создающие акустический дискомфорт.

Для количественной оценки звука используют усредненные параметры, определяемые на основании статистических законов. Сила звука - устаревший термин, описывающий величину, подобную интенсивности звука, но не идентичную ей. Она зависит от длины волны. Единица измерения силы звука - бел (Б) . Уровень звука чаще всего измеряют в децибелах (это 0,1Б). Человек на слух может обнаружить разницу в уровне громкости приблизительно в 1 дБ.

Для измерения акустического шума, Стивеном Орфилдом, была основана в Южном Миннеаполисе «Лаборатория Орфилд». Чтобы достичь исключительной тишины, в комнате использованы стекловолоконные акустические платформы толщиной в метр, двойные стены из изолированной стали и бетон толщиной в 30 см. Комната блокирует 99,99 процентов внешних звуков и поглощает внутренние. Эта камера используется многими производителями для тестирования громкости своих продуктов, таких как клапаны сердца, звук дисплея мобильного телефона, звук переключателя на приборной панели автомобиля. Также её используют для определения качества звука.

Звуки различной силы оказывают на организм человека различные воздействия. Так звук силой до 40 дБ оказывает успокаивающее действие. От воздействия звука 60-90 дБ возникает чувство раздражения, утомляемость, головная боль. Звук силой 95-110 дБ вызывает постепенно ослабление слуха, нервно-психический стресс, различные заболевания. Звук от 114 дБ вызывает звуковое опьянение наподобие алкогольного опьянения, нарушает сон, разрушает психику, приводит к глухоте.

В России действуют санитарные нормы допустимого уровня шума, где для различных территорий и условий нахождения человека даны предельные значения уровня шума:

· на территории мкр-она 45-55 дБ;

· в школьных классах 40-45 дБ;

· больницы 35-40 дБ;

· в промышленности 65-70 дБ.

В ночное время (23:00-7:00) уровни шума должны быть на 10 дБ меньше.

Примеры силы звука в децибелах:

· Шорох листьев: 10

· Жилое помещение: 40

· Разговор: 40–45

· Офис: 50–60

· Шум в магазине: 60

· Телевизор, крик, смех на расстоянии 1 м: 70–75

· Улица: 70–80

· Фабрика (тяжелая промышленность): 70–110

· Цепная пила: 100

· Старт реактивного самолёта: 120–130

· Шум на дискотеке: 175

Восприятие звуков человеком

Слух - способность биологических организмов воспринимать звуки органами слуха. В основе возникновения звука лежат механические колебания упругих тел. В слое воздуха, непосредственно примыкающем к поверхности колеблющего тела, возникает сгущение (сжатие) и разрежения. Эти сжатия и разрежения чередуются во времени и распространяются в стороны в виде упругой продольной волны, которая достигает уха и вызывает вблизи него периодические колебания давления, воздействующие на слуховой анализатор.

Обычный человек способен слышать звуковые колебания в диапазоне частот от 16–20 Гц до 15–20 кГц. Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста, пола, подверженности слуховым болезням, тренированности и усталости слуха.

У человека органом слуха является ухо, которое воспринимает звуковые импульсы, а также отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами. Он представлен тремя отделами: наружным, средним и внутренним ухом, каждый из которых выполняет свои конкретные функции.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина у живых организмов работает как приемник звуковых волн, которые затем передаются во внутреннюю часть слухового аппарата. Значение ушной раковины у человека намного меньше, чем у животных, поэтому у человека она практически неподвижна.

Складки человеческой ушной раковины вносят в поступающий в слуховой проход звук небольшие частотные искажения, зависящие от горизонтальной и вертикальной локализации звука. Таким образом, мозг получает дополнительную информацию для уточнения местоположения источника звука. Этот эффект иногда используется в акустике, в том числе для создания ощущения объёмного звука при использовании наушников или слуховых аппаратов. Наружный слуховой проход заканчивается слепо: от среднего уха он отделен барабанной перепонкой. Уловленные ушной раковиной звуковые волны ударяются в барабанную перепонку и вызывают ее колебания. В свою очередь, колебания барабанной перепонки передаются в среднее ухо.

Основной частью среднего уха является барабанная полость - небольшое пространство объемом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко - они соединяются между собой и с внутренним ухом (окно преддверия), они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их. Полость среднего уха связана с носоглоткой посредством евстахиевой трубы, через которую выравнивается среднее давление воздуха внутри и снаружи от барабанной перепонки.

Внутреннее ухо из-за своей замысловатой формы называется лабиринтом. Костный лабиринт состоит из преддверия, улитки и полукружных каналов, но непосредственное отношение к слуху имеет только улитка, внутри которой находится перепончатый канал, заполненный жидкостью, на нижней стенке которого расположен рецепторный аппарат слухового анализатора, покрытый волосковыми клетками. Волосковые клетки улавливают колебания жидкости, заполняющей канал. Каждая волосковая клетка настроена на определенную звуковую частоту.

Слуховой орган человека работает следующим образом. Ушные раковины улавливают колебания звуковой волны и направляют их в слуховой проход. По нему колебания направляются в среднее ухо и, достигнув барабанной перепонки, вызывают ее колебания. Через систему слуховых косточек колебания передаются дальше – во внутреннее ухо (звуковые колебания передаются перепонке овального окна). Колебания перепонки вызывают движение жидкости в улитке, она, в свою очередь, заставляет колебаться базальную мембрану. При движении волоконец волоски рецепторных клеток касаются покровной мембраны. В рецепторах возникает возбуждение, которое по слуховому нерву в конечном итоге передается в головной мозг, где через средний и промежуточный мозг возбуждение попадает в слуховую зону коры больших полушарий, расположенную в височных долях. Здесь происходит окончательное различение характера звука, его тона, ритма, силы, высоты и его смысла.

Влияние шума на человека

Сложно переоценить воздействие шума на состояние здоровья людей. Шум относится к тем факторам, к которым нельзя привыкнуть. Человеку лишь кажется, что он привык к шуму, но акустическое загрязнение, действуя постоянно, разрушает здоровье человека. Шум вызывает резонанс внутренних органов, постепенно изнашивая их незаметно для нас. Недаром в средние века существовала казнь "под колокол". Гул колокольного звона мучил и медленно убивал осужденного.

Долгое время влияние шума на организм человека специально не изучалось, хотя уже в древности знали о его вреде. В настоящее время ученые во многих странах мира ведут различные исследования с целью выяснения влияния шума на здоровье человека. В первую очередь от шума страдают нервная, сердечно-сосудистая системы и органы пищеварения. Существует зависимость между заболеваемостью и длительностью проживания в условиях акустического загрязнения. Рост болезней наблюдается после проживания в течение 8-10 лет при воздействии шума с интенсивностью выше 70 дБ.

Длительный шум неблагоприятно влияет на орган слуха, понижая чувствительность к звуку. Регулярное и длительное воздействие производственного шума в 85-90 дБ приводит к появлению тугоухости (постепенной потере слуха). Если сила звука выше 80 дБ, появляется опасность потери чувствительности находящихся в среднем ухе ворсинок – отростков слуховых нервов. Отмирание половины из них еще не ведет к ощутимой потере слуха. А если погибает больше половины - человек погрузится в мир, в котором не слышно шелеста деревьев, жужжания пчел. С потерей всех тридцати тысяч слуховых ворсинок человек попадает в мир безмолвия.

Шум обладает аккумулятивным эффектом, т.е. акустические раздражение, накапливаясь в организме, все сильнее угнетают нервную систему. Поэтому перед потерей слуха от воздействия шумов возникает функциональное расстройство центральной нервной системы. Особенно вредное влияние шум оказывает на нервно-психическую деятельность организма. Процесс нервно-психических заболеваний выше среди лиц, работающих в шумных условиях, нежели у лиц, работающих в нормальных звуковых условиях. Поражаются все виды интеллектуальной деятельности, ухудшаются настроение, иногда появляется ощущение растерянности, тревоги, испуга, страха , а при высокой интенсивности - чувство слабости, как после сильного нервного потрясения. В Великобритании, например, один из четырёх мужчин и одна из трёх женщин больны неврозами из-за высокого уровня шума.

Шумы вызывают функциональные расстройства сердечно-сосудистой системы. Изменения, происходящие в сердечнососудистой системе человека под воздействием шума, имеют следующие симптомы: болевые ощущения в области сердца, сердцебиение, неустойчивость пульса и артериального давления, иногда наблюдается наклонность к спазмам капилляров конечностей и глазного дна. Функциональные сдвиги, возникающие в системе кровообращения под влиянием интенсивного шума, со временем могут привести к стойким изменениям сосудистого тонуса, способствующим развитию гипертонической болезни.

Под влиянием шума изменяются углеводный, жировой, белковый, солевой обмены веществ, что проявляется в изменении биохимического состава крови (снижается уровень сахара в крови). Шум оказывает вредное влияние на зрительные и вестибулярные анализаторы, снижает рефлекторную деятельность , что часто становится причиной несчастных случаев и травм. Чем выше интенсивность шума, тем хуже человек видит и реагирует на происходящее.

Шум также влияет на способность к интеллектуальной и учебной деятельности. Например, на успеваемость учеников. В 1992 году в Мюнхене аэропорт перенесли в другую часть города. И выяснилось, что проживавшие рядом со старым аэропортом ученики, которые до его закрытия демонстрировали плохие показатели по чтению и запоминанию информации, в тишине стали показывать намного лучшие результаты. Зато в школах того района, куда аэропорт перенесли, успеваемость, наоборот, ухудшилась, а дети получили новое оправдание для плохих оценок.

Исследователи установили, что шум может разрушать растительные клетки. Например, эксперименты показали, что растения, подверженные обстрелу звуками, засыхают и гибнут. Причиной гибели является чрезмерное выделение влаги через листья: когда уровень шума превышает определённый предел, цветы буквально исходят слезами. Пчела теряет способность ориентироваться и перестаёт работать при шуме реактивного самолёта.

Очень шумная современная музыка также притупляет слух, вызывает нервные заболевания. У 20 процентов юношей и девушек, часто слушающих модную современную музыку, слух оказался притупленным в такой степени, как у 85 летних стариков. Особую опасность представляют плееры и дискотеки для подростков. Обычно уровень шума на дискотеке составляет 80–100 дБ, что сравнимо с уровнем шума интенсивного уличного движения или взлетающего в 100 м турбореактивного самолёта. Громкость звука плеера составляет 100–114 дБ. Почти так же оглушительно работает отбойный молоток. Здоровые барабанные перепонки без ущерба могут переносить громкость плеера в 110 дБ максимум в течение 1,5 мин. Французские учёные отмечают, что нарушения слуха в наш век активно распространяются среди молодых людей; с возрастом они, скорее всего, будут вынуждены пользоваться слуховыми аппаратами. Даже низкий уровень громкости мешает концентрации внимания во время умственной работы. Музыка, пусть даже совсем тихая, снижает внимание – это следует учитывать при выполнении домашней работы. Когда звук нарастает, организм производит много гормонов стресса, например, адреналин. При этом сужаются кровеносные сосуды, замедляется работа кишечника. В дальнейшем всё это может привести к нарушениям работы сердца и кровообращения. Ухудшение слуха из-за шума относится к неизлечимым заболеваниям. Восстановить поврежденный нерв хирургическим путем практически невозможно.

Негативно влияют на нас не только те звуки, которые мы слышим, но и те, которые находятся за пределами диапазона слышимости: прежде всего – инфразвук. Инфразвук в природе возникает при землетрясениях, ударах молний, при сильном ветре. В городе источники инфразвука - тяжелые станки, вентиляторы и любое оборудование, которое вибрирует. Инфразвук с уровнем до 145 дБ вызывает физическое напряжение, переутомление, головные боли, нарушения работы вестибулярного аппарата. Если инфразвук более сильный и длительный, то человек может ощущать вибрации в грудной клетке, сухость во рту, нарушения зрения, головную боль и головокружение.

Опасность инфразвука в том, что от него сложно защититься: в отличие от обычного шума, он практически не поддается поглощению и распространяется намного дальше. Для его подавления необходимо снизить звук в самом источнике с помощью специального оборудования: глушителей реактивного типа.

Полная тишина также оказывает вред на организм человека. Так, сотрудники одного конструкторского бюро, имевшего прекрасную звукоизоляцию, уже через неделю стали жаловаться на невозможность работы в условиях гнетущей тишины. Они нервничали, теряли работоспособность.

Конкретным примером воздействия шума на живые организмы, можно считать следующее событие. Тысячи не вылупившихся птенцов погибли в результате дноуглубительных работ, ведущихся немецкой компанией «Мебиус» по распоряжению Минтранса Украины. Шум от работающей техники разносился на 5-7км, оказывая негативное влияние на прилегающие территории Дунайского биосферного заповедника. Представители Дунайского биосферного заповедника и еще 3 организаций вынуждены были с болью констатировать гибель всей колонии пестроносой крачки и речной крачки, которые располагались на косе Птичья. Дельфины и киты выбрасываются на берег из-за сильных звуков военных гидролокаторов.

Источники шума в городе

Самое вредное воздействие оказывают звуки на человека в больших городах. Но даже в загородных поселках можно страдать от шумового загрязнения, вызванного работающими техническими приспособлениями у соседей: газонокосилкой, токарным станком или музыкальным центром. Шум от них может превышать предельно допустимые нормы. И все же основное загрязнение шумовое происходит в городе. Источником его в большинстве случаев являются транспортные средства. Самая большая интенсивность звуков исходит от автомагистралей, метро и трамваев.

Автотранспорт . Наибольшие уровни шума отмечаются на магистральных улицах городов. Средняя интенсивность движения достигает 2000-3000 транспортных единиц в час и больше, а максимальные уровни шума – 90-95 дБ.

Уровень уличных шумов определяется интенсивностью, скоростью и составом транспортного потока. Кроме того, уровень уличных шумов зависит от планировочных решений (продольный и поперечный профиль улиц, высота и плотность застройки) и таких элементов благоустройства, как покрытие проезжей части и наличие зелёных насаждений. Каждый из этих факторов способен изменить уровень транспортного шума до 10 дБ.

В промышленном городе обычен высокий процент грузового транспорта на магистралях. Увеличение, в общем потоке автотранспорта, грузовых автомобилей, особенно большегрузных с дизельными двигателями, приводит к росту уровней шума. Шум, возникающий на проезжей части магистрали, распространяется не только на примагистральную территорию, но вглубь жилой застройки.

Рельсовый транспорт. Повышение скорости движения поездов также приводит к значительному росту уровня шума в жилых зонах, расположенных вдоль железнодорожных путей или близ сортировочных станций. Максимальный уровень звукового давления на расстоянии 7,5 м от движущегося электропоезда достигает 93 дБ, от пассажирского – 91, от товарного состава –92 дБ.

Шум, возникающий при прохождении электропоездов, легко распространяется на открытой территории. Наиболее значительно звуковая энергия снижается на расстоянии первых 100 м от источника (в среднем на 10 дБ). На расстоянии 100-200 снижение шума равно 8 дБ, а расстоянии от 200 до 300 всего на 2-3 дБ. Основной источник железнодорожного шума – удары вагонов при движении на стыках и неровностях рельсов.

Из всех видов городского транспорта наиболее шумный трамвай . Стальные колёса трамвая при движении по рельсам создают уровень шума на 10 дБ выше, чем колёса автомобилей при соприкосновении с асфальтом. Трамвай создаёт шумовые нагрузки при работе двигателя, открывании дверей, подаче звуковых сигналов. Высокий уровень шума от движения трамвая – одна из основных причин сокращения трамвайных линий в городах. Однако трамвай обладает и целым рядом преимуществ, поэтому при снижении создаваемого им шума он может выиграть в соревновании с другими видами транспорта.

Большое значение имеет скоростной трамвай. Он может с успехом использоваться как основной вид транспорта в малых и средних городах, а в крупных – как городской, пригородный и даже как междугородный, для связи с новыми жилыми массивами, промышленными зонами, аэропортами.

Воздушный транспорт. Значительный удельный вес в шумовом режиме многих городов занимает воздушный транспорт. Нередко аэропорты гражданской авиации оказываются расположенными в непосредственной близости от жилой застройки, а воздушные трассы проходят над многочисленными населёнными пунктами. Уровень шума зависит от направления взлётно-посадочных полос и трасс пролётов самолётов, интенсивности полётов в течение суток, сезонов года, от типов самолётов, базирующихся на данном аэродроме. При круглосуточной интенсивной эксплуатации аэропортов эквивалентные уровни звука на жилой территории достигают в дневное время 80 дБ, в ночное – 78 дБ, максимальные уровни шума колеблются от 92 до 108 дБ.

Промышленные предприятия. Источником большого шума в жилых кварталах городов являются промышленные предприятия. Нарушение акустического режима отмечается в тех случаях, когда их территория непосредственно к жилым массивам. Изучение промышленного шума показало, что по характеру звучания он постоянный и широкополосный, т.е. звук различных тонов. Наиболее значительные уровни наблюдаются на частотах 500-1000 Гц, то есть в зоне наибольшей чувствительности органа слуха. В производственных цехах устанавливается большое количество разнотипного технологического оборудования. Так, ткацкие цехи могут быть охарактеризованы уровнем звука 90-95 дБ А, механические и инструментальные - 85-92, кузнечнопрессовые – 95-105, машинные залы компрессорных станций – 95-100 дБ.

Домашняя техника. С наступлением постиндустриальной эпохи всё больше и больше источников шумового загрязнения (а также электромагнитного) появляется и внутри жилища человека. Источником этого шума является бытовая и офисная техника.

Тематики аудио стоит рассказать о человеческом слухе несколько подробнее. Насколько субъективно наше восприятие? Можно ли протестировать свой слух? Сегодня вы узнаете самый простой способ выяснить, полностью ли ваш слух соответствует табличным значениям.

Известно, что среднестатистический человек способен воспринимать органами слуха акустические волны в диапазоне от 16 до 20 000 Гц (в зависимости от источника - 16 000 Гц). Этот диапазон и называется слышимым диапазоном.

20 Гц Гул, который только ощущается, но не слышится. Воспроизводится преимущественно топовыми аудиосистемами, так что в случае тишины виновата именно она
30 Гц Если не слышно, вероятнее всего, снова проблемы воспроизведения
40 Гц В бюджетных и среднеценовых колонках будет слышно. Но очень тихо
50 Гц Гул электрического тока. Должно быть слышно
60 Гц Слышимая (как и все до 100 Гц, скорее осязаемая за счёт переотражения от слухового канала) даже через самые дешёвые наушники и колонки
100 Гц Конец нижних частот. Начало диапазона прямой слышимости
200 Гц Средние частоты
500 Гц
1 кГц
2 кГц
5 кГц Начало диапазона высоких частот
10 кГц Если эта частота не слышна, вероятны серьёзные проблемы со слухом. Необходима консультация врача
12 кГц Неспособность слышать эту частоту может говорить о начальной стадии тугоухости
15 кГц Звук, который не способна слышать часть людей после 60 лет
16 кГц В отличие от предыдущей, эту частоту не слышат почти все люди после 60 лет
17 кГц Частота является проблемной для многих уже в среднем возрасте
18 кГц Проблемы со слышимостью этой частоты - начало возрастных изменений слуха. Теперь ты взрослый. :)
19 кГц Предельная частота среднестатистического слуха
20 кГц Эту частоту слышат только дети. Правда

»
Этого теста достаточно для приблизительной оценки, но если вы не слышите звуки выше 15 кГц, то стоит обратиться к врачу.

Обратите внимание, что проблема слышимости низких частот, скорее всего, связана с .

Чаще всего надпись на коробке в стиле «Воспроизводимый диапазон: 1–25 000 Гц» - это даже не маркетинг, а откровенная ложь со стороны производителя.

К сожалению, компании обязаны сертифицировать не все аудиосистемы, поэтому доказать, что это враньё, практически невозможно. Колонки или наушники, может быть, и воспроизводят граничные частоты… Вопрос в том, как и на какой громкости.

Проблемы со спектром выше 15 кГц - вполне обычное возрастное явление, с которым пользователи, скорее всего, столкнутся. А вот 20 кГц (те самые, за которые так борются аудиофилы) обычно слышат только дети до 8–10 лет.

Достаточно последовательно прослушать все файлы. Для более подробного исследования можно воспроизводить семплы, начиная с минимальной громкости, постепенно увеличивая её. Это позволит получить более корректный результат в том случае, если слух уже немного испорчен (напомним, что для восприятия некоторых частот необходимо превышение определённого порогового значения, которое как бы открывает, помогает слуховому аппарату слышать её).

А вы слышите весь частотный диапазон, который способен ?

Человека ухудшается, и со временем мы теряем способность улавливать определенную частоту .

Видео, сделанное каналом AsapSCIENCE , является своеобразным тестом возрастной потери слуха, который поможет вам узнать пределы вашей слышимости.

В видео проигрываются различные звуки, начиная с частоты 8000 Гц, что означает, что у вас не нарушен слух .

Затем частота повышается, и это указывает на возраст вашего слуха в зависимости от того, когда вы перестаете слышать определенный звук.


Итак, если вы слышите частоту:

12 000 Гц – вы младше 50-ти лет

15 000 Гц – вы младше 40-ти лет

16 000 Гц – вы младше 30-ти лет

17 000 – 18 000 – вы младше 24-лет

19 000 – вы младше 20-ти лет

Если вы хотите, чтобы тест был более точным, вам стоит настроить качество видео на формат 720p или лучше на 1080p, и слушать с наушниками.

Проверка слуха (видео)


Потеря слуха

Если вы слышали все звуки, вы, скорее всего младше 20-ти лет. Результаты зависят от сенсорных рецепторов в вашем ухе, называемых волосковые клетки , которые со временем повреждаются и дегенерируют.

Такой тип потери слуха называется нейросенсорная тугоухость . Это нарушение могут вызывать целый ряд инфекций, лекарства и аутоиммунные заболевания. Внешние волосковые клетки, которые настроены на улавливание более высоких частот, обычно погибают первыми, и потому происходит эффект потери слуха, связанный с возрастом, как было продемонстрировано в данном видео.

Слух человека: интересные факты

1. Среди здоровых людей диапазон частоты, который может уловить человеческое ухо составляет от 20 (ниже чем самая низкая нота на фортепьяно) до 20 000 Герц (выше чем самая высокоая нота на маленькой флейте). Однако верхний предел этого диапазона постоянно снижается с возрастом.

2. Люди разговаривают между собой на частоте от 200 до 8000 Гц , а человеческое ухо наиболее чувствительно к частоте 1000 – 3500 Гц

3. Звуки, которые находятся выше предела слышимости человека, называют ультразвуком , а те что ниже – инфразвуком .

4. Наши уши не перестают работать даже во сне , продолжая слышать звуки. Однако наш мозг их игнорирует.

5. Звук движется со скоростью 344 метра в секунду . Звуковой удар возникает, когда объект преодолевает скорость звука. Звуковые волны впереди и позади объекта сталкиваются и создают удар.

6. Уши - самоочищающийся орган . Поры в ушном канале выделяют ушную серу, а крошечные волоски, называемые ресничками, выталкивает серу из уха

7. Звук детского плача составляет примерно 115 дБ , и это громче, чем сигнал автомобиля.

8. В Африке есть племя Маабан, которые живут в такой тишине, что они даже в старости слышат шепот на расстоянии до 300 метров .

9. Уровень звука бульдозера , работающего вхолостую, составляет около 85 дБ (децибел), что может вызвать повреждение слуха всего после одного 8-ми часового рабочего дня.

10. Сидя перед колонками на рок-концерте , вы подвергаете себя 120 дБ, что начинает повреждать слух всего через 7,5 минут.

Каждый видел на аудиограммах или аудиотехнике такой параметр громкости или с ним связанный -- . Это единица измерения громкости. Когда-то люди договорились и обозначали, что в норме человек слышит от 0дБ, что фактически означает некое звуковое давление, которое воспринимается ухом. Статистика же говорит, что диапазон нормы -- это как незначительное падение до 20дБ, так и слух выше нормы в виде -10дБ! Дельта "нормы" -- составляет 30дБ, что как-то и немало.

Что такое динамический диапазон слуха? Это возможность слышать звуки с разной громкостью. Обычно принимается как факт, что человеческое ухо может слышать от 0дБ до 120-140дБ. Крайне не рекомендуют долго слушать звуки уже от 90дБ и выше.

Динамический диапазон работы каждого уха говорит нам о том, что при 0дБ ухо слышит хорошо и детально, при 50дБ слышит хорошо и детально. Можно и при 100дБ. На практике все бывали в клубе или концерте, где играла музыка громко -- и детализация чудесная. Слушали еде-едва тихонечко через наушники запись, лежа в тихой комнате -- и тоже все детали на местах.

Фактически падение слуха можно обозначить как сокращение динамического диапазона. По факту человек с плохим слухом не слышит деталей при низкой громкости. Его динамический диапазон зауживается. Вместо 130дБ -- становится 50-80дБ. Именно поэтому : никак нельзя "засунуть" информацию, которая в реальности находится в диапазоне 130дБ в диапазон 80дБ. А если еще и вспомнить что децибелы - нелинейная зависимость, то становится понятна вся трагичность ситуации.

Но теперь вспомним о хорошем слухе. Вот кто-то слышит все на уровне около 10дБ падения. Это нормально и социально приемлемо. На практике такой человек может услышать речь с 10 метров обычную. Но тут появляется человек с идеальным слухом -- выше 0 на 10дБ -- и он слышит эту же речь с 50 метров с равными условиями. Динамический диапазон шире -- деталей и возможностей больше.

Широкий динамический диапазон заставляет работать мозг совершенно, качественно иначе. Гораздо больше информации, гораздо точнее и детальнее она, т.к. слышно все больше различных обертонов и гармоник, которые при узком динамическом диапазоне пропадают: ускользают от внимания человека, т.к. невозможны их услышать.

Кстати, раз уж и доступен динамическими диапазон в 100дБ+, так это еще и означает, что человек может постоянно его использовать. Только что послушал на уровне громкости в 70дБ, потом резко начал слушать -- 20дБ, потом 100дБ. Переход должен занимать минимальное время. И фактически можно сказать, что человек с падением не позволяет себе иметь динамический диапазон большой. Тугоухие люди как бы подставляют идею о том, что сейчас все очень громко -- и ухо готовится услышать громкое или очень громкое, вместо реальной ситуации.

Заодно динамический диапазон своим наличием показывает, что ухо не только записывает звуки, но и подстраивается под текущую громкость, дабы слышать все хорошо. Параметр общей громкости точно также передается к мозгу, как и звуковые сигналы.

А вот человек с идеальным слухом очень гибко может варьировать свой динамический диапазон. И чтобы нечто услышать -- не напрягается, а сугубо расслабляется. Таким образом слух остаётся отличным как в динамическом диапазоне, так заодно и в частотном.

Recent Posts from This Journal

  • Как начинается падение на высоких частотах? Нет возможности слышать или внимания? (20000Гц)

    Можно провести честный эксперимент. Берем обычных людей, пусть даже 20 лет. И включаем музыку. Правда, есть один нюанс. Надо взять и сделать так,…


  • Нытье ради нытья. Видео

    Люди привыкают ныть. Кажется, что это -- обязательно и нужно. Такие вот, странные эмоции и ощущения внутри. Но все забывают, что ныть -- это не…

  • Говоришь о какой-то проблеме -- значит тебя это волнует. Прямо-таки не можешь умолчать. Постоянно такое рассказывают. Но в то же время упускают…

  • Что такое важное событие? Всегда ли это что-то действительно влияющие на человека? Или? На самом деле, важное событие -- это лишь ярлык внутри головы…


  • Снимаем слуховой аппарат: сложности перехода. Исправления слуха №260. Видео

    Наступает интересный момент: вот слух стал достаточно хорошим, чтобы уже было порой неплохо слышно без СА. Но пытаясь его снять -- всё кажется…


  • Наушники с костной проводимостью. Зачем, что и как будет со слухом?

    С каждым днём всё чаще можно услышать про наушники и динамики с костной проводимостью. Лично на мой взгляд, это очень плохая идея в связке как с…

Частоты

Чaстота - физическая величина, характеристика периодического процесса, равна количеству повторений или возникновения событий (процессов) в единицу времени.

Как Мы знаем, человеческое ухо слышит частоты от 16 Гц до 20 000 кГц. Но это очень усреднённо.

Звук возникает по разным причинам. Звук - это волнообразное давление воздуха. Если бы не было воздуха, мы бы не слышали никакого звука. В космосе нет звука.
Мы слышим звук потому, наши уши чувствительны к изменению давления воздуха - звуковым волнам. Наиболее простой звуковой волной является короткий звуковой сигнал - вот такой:

Звуковые волны, проникая в слуховой канал, приводят в колебание барабанную перепонку. Через цепь косточек среднего уха колебательное движение перепонки передаётся жидкости улитки. Волнообразное движение этой жидкости, в свою очередь, передаётся основной мембране. Движение последней влечёт за собой раздражение окончаний слухового нерва. Таков главный путь звука от его источника до нашего сознания. ТЫЦ

Когда вы хлопаете в ладоши, воздух между ладонями выталкивается и создается звуковая волна. Повышенное давление заставляет молекулы воздуха распространяться во все стороны со скоростью звука, который равен 340 м/с. Когда волна достигает уха, она заставляет вибрировать барабанную перепонку, с которой сигнал передается в мозг и вы слышите хлопок.
Хлопок - это короткое одиночное колебание, которое быстро затухает. График звуковых колебаний типичного хлопка выглядит так:

Другой типичный пример простой звуковой волны - периодическое колебание. К примеру, когда звонит колокол, воздух сотрясается от периодических колебаний стенок колокола.

Так с какой же частоты начинает слышать обычное человеческое ухо? Частоту в 1 Гц оно не услышит, а лишь может увидеть на примере колебательной системы. Человеческое ухо именно слышит начиная с частот 16 Гц. То есть когда колебания воздуха воспринимает наше ухо как некий звук.

Сколько звуков слышит человек?

Не все люди с нормальным слухом одинаково слышат. Одни способны различать близкие по высоте и громкости звуки и улавливать в музыке или шуме отдельные тона. Другие же этого сделать не могут. Для человека с тонким слухом существует больше звуков, чем для человека с неразвитым слухом.

Но насколько вообще должна отличаться частота двух звуков, чтобы их можно было слышать как два разных тона? Можно ли, например, отличить друг от друга тона, если разница в частотах равна одному колебанию в секунду? Оказывается, что для некоторых тонов это возможно, а для других нет. Так, тон с частотой 435 можно отличить по высоте от тонов с частотами 434 и 436. Но если брать более высокие тона, то отличие сказывается уже при большей разности частот. Тона с числом колебаний 1000 и 1001 ухо воспринимает как одинаковые и улавливает разницу в звучании только между частотами 1000 и 1003. Для более высоких тонов эта разность в частотах ещё больше. Например, для частот около 3000 она равна 9 колебаниям.

Точно так же не одинакова наша способность отличать звуки, близкие по громкости. При частоте 32 можно расслышать только 3 звука разной громкости; при частоте 125 - уже 94 звука различной громкости, при 1000 колебаний - 374, при 8000 - снова меньше и, наконец, при частоте 16 000 мы слышим только 16 звуков. Всего же звуков, различных по высоте и громкости, наше ухо может уловить более полумиллиона! Это только полмиллиона простых звуков. Прибавьте к этому бесчисленные сочетания из двух и более тонов - созвучия, и вы получите впечатление о многообразии того звукового мира, в котором мы живём и в котором наше ухо так свободно ориентируется. Вот почему ухо считается, наряду с глазом, самым чувствительным органом чувства.

По этому для удобства представления о звуке мы используем не обычную шкалу с делениями в 1 кГц

А логарифмическую. С расширенным представлением частот от 0 Гц до 1000 Гц. Спектр частот, таким образом, можно представить в виде вот такой диаграммы от 16 до 20000 Гц.

Но не все люди, даже с нормальным слухом, одинаково чувствительны к звукам различной частоты. Так, дети обычно без напряжения воспринимают звуки с частотой до 22 тысяч. У большинства взрослых чувствительность уха к высоким звукам уже понижена до 16–18 тысяч колебаний в секунду. Чувствительность же уха у стариков ограничена звуками с частотой в 10–12 тысяч. Они часто совершенно не слышат комариного пения, стрекотания кузнечика, сверчка и даже чириканья воробья. Таким образом от идеального звука (рис. выше) по мере старения человека он уже звуки слышит в более суженом ракурсе

Приведу пример диапазона частот музыкальных инструментов

Теперь применительно к Нашей тематике. Динамику, как колебательной системе, в ввиду ряда его особенностей, не удаётся воспроизвести весь спектр частот с постоянными линейными характеристиками. В идеале это был бы широкополосный динамик, воспроизводящий спектр частот от 16 Гц до 20 кГц с одним уровнем громкости. По этому в автозвуке применяют несколько типов динамиков для воспроизведения конкретных частот.

Выглядит это пока условно вот так (для трёхполосной системы + сабвуфер).

Сабвуфер от 16 Гц до 60 Гц
Мидбас от 60 Гц до 600 Гц
Мидрендж от 600 Гц до 3000 Гц
Твитер от 3000 Гц до 20000 Гц




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top